453-SDS-SWSI

MISSION SERVICES PROGRAM

Space Network (SN)
Web Services Interface (SWSI)
System Design Specification

DRAFT

October 2000

Naional Aeronactics and Goddard Space Flight Center
pace ministration G
reenbelt, Maryland

Space Network (SN) Web Services Interface (SWSI)

System Design Specification
October 2000

Prepared Under Contract NAS 9-98100

Prepared by:

Harshna Sampat
Computer Sciences Corporation

Prepared by:

Date

Gerad Klitsch
Computer Sciences Corporation

Prepared by:

Date

ThomasE. Sardella
SWSI Product Manager

Approved by:

Date

Goddard Space Flight Center
Greenbelt, Maryland

Date

453-SDS-SWSI

Preface

This System Design Specification describes the detailed design for the Space Network (SN) Web
Services Interface (SWSI) in support of operations of the National Aeronautics and Space
Adminigtration (NASA) Goddard Space Hight Center (GSFC) Network Control Center (NCC) and
of the Demand Access System (DAYS) located at the White Sands Complex (WSC).

Changes to this document shal be made by Documentation Change Notice (DCN) or by complete
revison.
Questions concerning this document or proposed changes should be addressed to:

National Aeronautics and Space Administration (NASA)
Goddard Space Flight Center

Technology and Mission Upgrades Project

Code 453

Greenbelt, Maryland 20771

iii 453-SDS-SWSI

Abstract

The primary function of the Space Network (SN) Web Services Interface (SWS) is to provide a
standards-based cross-platform customer interface for performing Tracking and Data Relay Satelite
(TDRS) and Demand Access System (DAS) scheduling and red-time service monitoring and control.
A secure interface will be provided to alow these functions to be performed ather from the NASA
Integrated Services Network (NISN) Internet Protocol (IP) Operational Network (IONET) or from
the Internet.

This System Design Specification presents the detailed design for the SWSI.
Keywords:. SWS, NCCDS SN\, DAS DASCON

iv 453-SDS-SWSI

Change Information Page

List of Effective Pages
Page Number Issue Page Number Issue
Document History
Document Number Status/Issue Publication Date CCR Number
v 453-SDS-SWSI

DCN Control Sheet

DCN
Number

Date/Time
Group

Month/
Year

Section(s)
Affected

Initials

Vi

453-SDS-SWSI

CONTENTS

PREFACE ...ttt e e e R e s e an e R e nnn e ne e n e ne e nnre e 0
A B ST RA CT ettt et e ae e et e e s he e e abe e e ae e e ee e sae e eabeeeaeeereenaeesnreennneanns v
CHANGE INFORMATION PAGEco oot \%
DCN CONTROL SHEET ..ttt st e e n e sne e nane e VI
FHUIES. ..ottt bR AR X
SECTION 1. INTRODUCTION ..ot e sneennne e 1
11 PUF POSE. ...t b e R e E R e AR e AR e R R e R R AR e A Re R R R et e R e e ne 1
12 L2 T Tox 0 011] o o OO 1
13 SCOPIE. ..ttt ettt et sttt sttt ettt R A E e d et E et et 2
14 DOCUMENT OF QANIZALION........cceiiirecereseseeteeseesseeesesssssssessssse e sesssssessssssessssesssesessesesssesssssssssssssssssesssssnsesssssnsesssssssesasns 2
ST Y o] o] T7= o] =Y B oo 1= o R 3
SECTION 2. DESIGN OVERVIEW ...ttt 1
21 L@ Y= T T OOV 1
2.2 SYSEM ENVIFONMENT ...ttt e b bbb 4
Network Control Center (NCC) Data System (NCCDS) OPEIatioNS.........cvecreeereeemrieemsienesenessinessssesssssssessssesseseens 4
NCCDS TDRSS Unscheduled Time (TUT) SENVET......cc.ceeirereeseeseeseesessesesssssesessssessessssssssssessssssssssssssssssessssees 5

NISN SECUMNE GELEWEYoouieiiicicireresi s e bbb 6

23 YL S = 1 o OOV 6
24 SOTTWAY € OVEN VIEBW.....c..eerecetetrereeie ettt s bbb £ £ s b e £ 42t E b £ e e R e b e e s A b s et s et e b ee e e aet et e snbe b s renis 6
25 DEVE OPIMENT AP O8Nouevvrereraereeer et te et ses e b bbb b 8
251 SEndards/MethOdoIOgY ... sssssssssissssssssesssssssssssssssss s ssssssssssss s ssssssssssssssssns 8
2.5.2 Deveopment ENVIFONMENTLccooirrrecceeeiesssssseesesessssssssssssessseesssnns 9
25.3 Development TOOIS and SOfWEIE..............ccoooeereeecevesissssssseeesssssssssisssssssssssssssssssssss s ssssssssssssas 10
SECTION 3. CLIENT DESIGN ...ttt st nne e e 1
G0 R @ V= VT OO 1

vii 453-SDS-SWSI

3.2 LS Y OF= 15T OO 1

3.3 CHENE USEN INLEITACE. ...ttt e e bbb bbbttt 5
BBl L MBINPANA. ... s s 5
SWVSI e eeeeeesssssss s sss s 6

3.3.2 LOGINPANE.............ooooiieseeeeeeeeeetissssss s ssssssssss s 6
3.3.3 SChedUIE REQUESE PANEIS............cooiieeeececeeeiimissss e seceseessssssssssesssssssssssssssss s sssssssssssss s sesssssssssssssnns 8
3.3.3.1 Schedule Add Request (SAR) Pandl...........cooocevvvcoviissssseseeesssssssssssssssseesssssssssssssssssssssssssens 9
3.3.3.2 Schedule Delete Request (SDR) Panfl.........oocceeceeeiineeeeceeeessssssssesesssssssssssssssssseeeees 12
3.3.3.3 Alternate Schedule Add Request (ASAR) Pandl...........ccccoooeneevvvvvoiisssssssenesesssssssissssssssee 13
3.3.34 Replace Request (RR) Pan@l.......ccoooooooiceeciiiecceeiiissseeeessessssssssssssessesssssssssssssssssseeeees 13
3.3.35 Wait List Request (WLR) Pangl..........ccccooiiiisissesssssssssssssssssssssssees 14
3.3.3.6 Resource Allocation Request (RAR) PaNEl........c.cceicccnsssssess st ssssessssse s ssssssssssssssssssssssnses 14
3.3.3.6 Resource Allocation Request (RAR) Pangl..........ooocovvvvceeeinreeceeceiisssseseessesssssssssssseeee 15
3.3.3.7 Resource Allocation Modification Request (RAMR) Pandl..............cccooonenvvvvvcvviissssssnne. 16
3.3.3.8 DASPayback Modification ReqUESt Pandl.................cccoomrcceceinneneeeeeceesessssssssseeeee 17
334 View SChedUl@ REQUESIS PaNL..................cooieeeeeevevessssssseesssssssssssisssssssssssssssssssssssss s sssssssssssss 18
335 View Active SChedUIE Pancccceeeceeisssseeseeecesssssssssssesessssssssssssss s sssssssssssss 21
3.35.1 View Service DIFlay Pan€l.......vivcieeeeesssscvsisisssssssseesssess 23
B.3i8 AIBIEPANE...........coooeee st 25
337 GCOMR PANEL........cooooeeuuuueuueemmmmmmssmmsssssssssssssssssssssssssssssss s8R0 27
3.37.1 GCMR Menu Pane fOr NCC SEIVICES......ccccourreeeeeeeisssneeeessssssssssssssssssesssssssssssssssssseseees 27
3.3.7.2 GCMR Menu Panel fOr DAS SEIVICES........ccoosissssssssssssssssssssssssssssssssssssessssssssssssssssssssssees 28
3.3.7.3 Service RecONfiQUIaion Pan@l.................o.cccccieecececeeiisnseeeessessssssssssseesessssssssssssssssssseeees 29
3.3.8 UPD .ottt 0
3.3.8. 1 UPD SUMMAY PANE..........oooooeeieiieeeseceeeiiisissssessseessssssssssssssssssesssssssssssssss s ssssssssssssssssseees 30
3.3.8.2 UPD DEEI PaNES.........ooovcveevevvevveeeimmissmssssssssmssmmssmmsssees 2
3.3.8.3 UPD PrOCESSING.....ooooereeeeeeeeisssssssssessessessssssssssssssssessssssssssssssssssssesssssssssssssssssssssssssssssssssssssnssssseees 4
.39 TOW & SHAE VECLOIS.......iveeeeiecveiisseeeeeesssseesssssssssssssssss s ssssss st sssss s sssssss 35
3.3.10 SEVICEPAMWINUOW........coooourereececeeessssssss s sssssessssssss s ssssssssssssss s sssssssss s ssssssssssssannas 37
3.3.11 SSC EGIING PANEL.........ooouuueummmmmmmmmmmmmmmmssiissssssssssssssss s ssnes 41
3312 DASREIOUICE AVAIADITTY.......oooeeeeeeeeeeeiseeceeitiss st ssessssssssssssss s ssssssssssss a2
3.3.13 DASPIayback Planning........ccccoooeccevvvvviiiseeesesssssssssssssssessnnas a4
34 (D2 =Y = g o = SOOI 45
G T8 T 1 o 11 o OO 48
SECTION 4. APPLICATION SERVER DESIGNooiiiiiieienie e 1
I © V= YT 1 OO 1
4.2 DELAITEA DESIQN ..cucviecrieetrieeireiee sttt ee bR e ee s 3

viii 453-SDS-SWSI

4.3 (D1 €= W 1= =0 =TT 4

1o oo [o PO 4
SECTION 5. ISOLATOR DESIGN ..ottt sttt s 1
51 L@ Y= YT T OOV 1
52 [solator Main Task (MAINTASK): ..ot et 4
53 Application Server Interface (SErVINTETACE): ..o 4
D31 TPL POttt sessss st 4
5.3. 1.1 SNIF TPLIMESSAOES......ooceceeueeeeeeeeisrseeeeesssssssssssssssss s sssssss s sssssss s sss s sess st 5
5.3.1.2 SDIF TPLIMESSAGES......vevutereeeissssesssesssnsseess 6
5.3. 1.3 USEIS TPL IMIESSAES........cveeeeueeeeeeessseeeeeesssssssseesssssssseesssssssses e ssssss s sesss s ssss s ssss s sssss e 9
532 TPZ2 POM oottt sessss s ssss s 1
5.3.3 TP POttt eeeeeesisss s sssssss s 12
5.4 Database |Nterface (DBINTEITACE):ccoccuoiervviereisessses st sssss s s s s ss s 14
55 SNIF INterface (SNifl NEerfate): ...ttt s et s s s s s nns 14
56 SDIF INterface (SAIfINLErfACE):ciiireireccr sttt s et e e st s nne 15
5.7 0 o 1 T PR 15
SECTION 6. SWSI-NCCDS INTERFACE DESIGNcooiiiiieecieeeee e 1
6.1 L@ Y= T T OOV 1
6.2 OPErAlING ENVIFONIMENT. ..ottt se s eas et sbe s st se st b e s bt £ s e e aeseese e s b es s seb et ee e snaetse e snbebasrenas 1
6.3 DELAIEA DESIGN ...ttt bRt b R 1
6.3.1 R 1S0/AOr MESSAGES...........cociiirieeeeeesesssvvsssssss s ssssssss s sssssss s ssssssssnns 3
B.3.2 INCCDS INETACE. ... irereeeeeeeieisissseeseeeseessssssssss s ssssssssssss s sssssss s sss s ssssssssnns 3
6.3.2.1 Manage NCCDS COMMUNICALIONScoommmrrrnssssssssssssssssseesss 5
6.3.2.1.1 SCNEAUIE REGUESL........o o eeeeeeeetisseeeeeeseeessssssss s ssssssssssssssss s sssssssssssss s ssssssssss s 5
6.3.2.1.2 Schedule RESUIL IMESSA0E............coooreeeesvevsisissssssss s ssssssssssssss s sssssssssssssssssssssssssssssssss s 5
6.3.2.1.3 USEr SCHEAUIE MESSAJ.........ccoumtrrereeeceeeisssssssssesessssessssssssss s sssssssssssss s sssssssssssssssssssssees 6
6.3.2.1.4 TDRS Scheduling WINAOW MESSAQE...........ccooemrrrreresvssiiisssssseesss 6
B.3.2.1.5 SLALE VECLON ...t eeeeeeiss e seesss bR 6
6.3.2.1.6 USEr PETOMMEANCE D@LAL..............cooooeeeeeeesvevvosissseess s 6
6.3.2.1.7 AcquiStion Falure NOUTICATON.cocccccceuurereeececeeesisssssseesessesssssssssssssessssssssssssssss e 6
6.3.2.1.8 Return Channd Time De@y MESSEE.........cccooormrrvrvivsisssssssseessssssssssssssssssessssssssssssssssssssssssssss 6
6.3.2.1.9 TIMETIANSE IMESSAOEocouurrrreeeeeceeessssssssssssessssessssssss s ssssssssss s ssssssssss s 6
6.3.2.1.10 Ground Control MeSSE0E REQUESL.............ccooooereeeeveevviissssesseesssssssssssssssssssessssssssssssssssssssssssssss 7

iX 453-SDS-SWSI

6.3.2.1.11 Ground Control Message Status and DiSDOSITION.........coorrvcvceeeermnserneeeceeeeessssssssseeeeeeeee 7

6.3.2.2 Send SChEAUIE REQUESL.................cooooeeeeeeeveeeesssssesess s ssssssssss s ssssssssssssssss s 7
0.3.2.3 RECEVE SCNEAUIE RESUIL ...t ne st s e sseseses s ses s see st et neseene s ees s 7
6.3.2.4 Send TDRSS SChedUling WINAOW..............coiereeevcvvssiissssesseess 7
0.3.2.5 SENU SEAE VECLON ..ot eteer et eer e seeeese s es s enes e s see s sesssessesae s as s ses st sessneseeneseensseees s 8
6.3.2.6 RECEVE PIMUELAL...........cossereereeeeseviisisssesssss s 8
6.3.2.7 Send Ground Control MeSSAgE REQUESL................cooreeveveieeeeseeeeesseeee s essssssssssssssssssssssssssnens 8
6.3.2.8 Receve Ground Control Message Status and DiSDOSItION.............ccooeeeeeeevevvevrsssssssesenee 8
6.3.2 Logging @ DEOQOING.........ovvvuierrreieieseeeessesssssesss s ssaseeess 8
7. SWSI-DAS INTERFACE DESIGNo 1
7.1 (@Y Y/ 1= 1
A S 1 w0 o g =) O 2
7.21 190|50r tO DASCON INEEITACEottt eeeseeeeseeeesetrsee e sseseses s ss e sesse e ses e see s nessenessenesneneens 2
7211 DEAIEA QESIGN ... ssssssss s 2
7.2.2 DASCON 10 |S0lAOr INEEITACE. ...ttt eeeseeeeree s ssesee e seeseses e se s s sesse s ses e ses s nessenessenesaensens 3
7221 DEAIEO DESGN.........ooovooveeissseeeseesssessissssssess s sssssssssss s ssssssssss s ssssss s 3
ARSI =5 (1 0 a1 10 AL RIS o O RS 3
73 D IR= 0Tz Sy N 10= k=10 < TR STORTRTRR 7
7.4 Support for test and OPEratioNal MOUES.........ccieuiereireeeree et eea bbb 7
SECTION 8. DATABASE DESIGNcoo ittt ettt e et e e e e e e e e e e e 1
8.1 Design PrinCipleS and GUITEIINESccuciieceeirecse ettt et s st ss st snsnssnsssnsssssssanns 1
8.2 THhESWSI Dat@hase DESIQN......cccoeiirirerererieteiressssietsessssssssessssssssssssssesssssssssssssssssessssssssesassssssesssssssesssssnssesessssssesssssnssnss 1
oI N @ V= AV 1= SRS 1
B.2.2 SHOrEU PrOCEUUIES ...ttt seee s e e ee e s ee s see s see e s ee e ee st ee st ee s see s seesenesaeeees 7
8.22.1 SWSI_ACHVESChEAUIE [OKG......coorrreeceeeiiissse e seeesssesssssssss s ssssssssssssssss e 7
8.2.2.2 SWSI_SChedUlEREGUESE DKQ......coiirrreerveevisissesseeesssssssssssssssssseessses 8
8.22.3 SWSI_SChedUIERESDONSE PKG......oirrrreveeeeessisieeeeeeeeeesssssssssseesesssees 9
8.224 SWSI_GCMR _PKG....ooiirrrreevevvisisissssseesssess 10
8.2.25 SWSI _SSCEAIL PKQ.......ommrrrrerreiieeeessisssseeessssssssesss 1

8.3 Database CONFIQUI BLIONcciueeireerieetree ettt et 11
84 DALADASE M AINTENANCE. ... et eeeeeee et et et et e et eeteetessessesae st st et sateaeeaseaseaseaseasessesresasasaaseasesseseeseeaaeent et easeaseasensenrennes 11
8.4.1 Synchronization With NCCDS....................esesssisissssssseesssas 11
B2 PUIGING ..ottt eeeessssss s sss s RRRR 1
8.4.3 BaCKUP @NU RECOVENYccoiiieeeeeeesvvvssissssssssesssas 11

X 453-SDS-SWSI

SR T @] o1 = o1 F=1 I @L0] 0o (= = 4 o) OO 12

SECTION 9. TUT SERVER ..ottt sttt s et 1
SECTION 10. SECURITY oottt st n e ene e 1
Ot S = ot | 1 VA o [N T 0 1=] 1
0 S = o 1 | 1 Y1/ o [1
O TS = ol |) VA == =R 2
APPENDIX A — COMMON CLASSES ... oottt 1
APPENDIX B - TRACEABILITY ottt 1
APPENDIX C - ISOLATOR-SNIF INTERFACE ...t 1
APPENDIX D — ISOLATOR-SDIF INTERFACEoooi e 1
T B oeeeuuussssseeeeeeeeeeeesssssssss e R R8RSR 1
APPENDIX E — ISOLATOR OBJECT TYPES DESCRIPTION......ccceooiriirinieneeneeie e 1
APPENDIX F— SWSI DATABASE TABLES ... 1
TADIEINGITIE ...t a s R8s b £ E s e e bbb ettt 1
I8 0= L 1= o 1O 1
1o T 01 o 1
ABBREVIATIONS AND ACRONYMS ...ttt s 1
Figures
Figure 2-1 High Level SIS ATCIITECIUNE. ... eeeereeeeeeesesesssesssnnsnsnns 4
Figure 2-2 High Level SWS DA OW DIBGIaM.............cooreeevvesseeeseeessesesssssssseessssssssesssssssssssssssssssssssssssssens 7
Figure2-3 SWS Development DireCtory SITUCTUNE..............ccvceeeeeeeeeeeesessses 10
Figure3-1 SWSI USE-CaSE DIBOIAM........ooocceeeeeeeesevseessssssssess s sss 2
Figure3-2 SWS Extended USe-Case DIaQramS................cwmmmmmmmmmmmmmmmmmssmmssseee 4
Figure3-3 MaIN CONLIOL PANEL ...t sssens 5
Figure3-4 Main Control Panel MenU OLIONS..................ccwweeeeeemmmmmssmssssssmssssmssees 6

X 453-SDS-SWSI

Figure3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Fgure 3-13
Figure 3-14
Fgure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-19a
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 3-28
Figure 3-29
Figure 3-30
Figure 3-31
Figure 3-32
Figure 3-33
Figure 3-34
Figure 3-35
Figure 3-36
Figure 3-37
Fgure4-1
Figure5-1
Fgure5-2
Figure5-3
Figure5-4
Figure5-5
Figure5-6
Figure 5-7

CoNNECioN PalramELErS Pan@looooooovecceeeeeinieeeeceesssssssssseseeesssesssssssssssssssssssssssssssssssssssssssees 7
Schedule Add REQUESE PaNEL...........ceeeceveeeeeisssessessssissessssssses 9
Example of respecifiable pand done for KaSAR SENVICE.........orcecceeeiiisseeeeececeeisis 1
Edit Service Hexibility ParameterSPan€................coooeevvvveoiisssseeseeesesvssssssssssssseesssssssssssssss 12
DElete REQUESE PANEL..........cooooeeeeceeeiiieseecessssssssssssessssssssssssss s sssssssssss s ssssssssssssssss 13
Walt LISt REQUESE PANEL.........oooeeessessssssssssessssssssssssssssssssssssssssssss s sssssssssssssssss 14
DAS Resource Allocation ReQUESE Panelcooececceeinneececeeessssssssseeeesssssesssssss 16
Resource Allocation Modification Regquest Panel CONSUCLOXS...............coooveeeeeeevvvveviersnns 16
DAS Resource Allocation Modification Request Pangl............cooooeevceceeeiiinnsneeeccececeeinns 17
DAS Playback ModifiCation REQUESL....................cieeneesevcevisssssssssessssssssssssssssssssesssssssssssssssns 18
SChedUI@ REQUESIS PaNEoooooeeeeeeiisssseeeeessssssss e ssssssssssss s sssssssssss s 19
Class Diagrams for SChedule REQUESES............ccooooervcvvvvvoiisssssseesssessess 20
ACHVE SCHEAUIE PANE.........oooeeeeitss it ssessessssss s ssssssss s ssssssssss 21
Class Diagrams Of ACtiVe SCNEAUIE..................coooocecrceecsssesseessesssssssissss s 22
SEVICE DIFPIAY PaNEL.......... et 23

DAS TDRS HanNdOVErS Pangl..............cooovvvvvvveveeveeveeeeessmmsss 24
Class Diagrams Of SEVICE DIPIGYcccceceeureeeeeeeeessssssssseeessessesssssssssssssessssssssssssssssessseseees 25
ALEIT PANEL........ooooeeeceeeeeeeeeeeeeassssssssssssssssssssssssssssssss s 55555510 26
DAS GCM MENU PENEL.........ooooeeeeeeiisseeceeeisisssssssssessssessssssssssssssesssssssssssssssssssessssssssssssssss 28
UPD SUMMENY PaNE........ooooieeeeeeeesssseessssessissssessss s sssssssssssssss s ssssssssssssssssssssees 31
UPD DG PANE.........oosss s 33
State VECLOr INPUL PANEL...............cooooeeeeeeseeceessssseseeessess 37
Class Diagram of ParameterizedRequest INEace...........cooorrrecceeeeineeeeeeceessssssseseeeee 33
Class Diagram of ServiceParmMWINGOW............oooeevvvveeviissssseeessessses 39
Class Diagram of ServiceBean INTEITaCe........ccooo e sseeseesssseessssssssessseeees 40
DAS SSC EQItING PNEL...........iiiiiss s sssnes 41
DAS Resource Availability REQUESE PaNEL..............cooorreeceeceeinseeeceeeesissssssseeeesesssessssssns 42
DAS AVAIEDITTY PANEL.........ooiiesissse e sssssssessnes 43
DAS Playback Planning Pan@l..............ccooieeceececceeisisssssseesssssssssssssssssssesssssssssssssssnnnns 44
DAS Playback AvalaDility REDOI..........ooooeeereeereeeeseessnnes 45
Data REQUESE PrOCEAUIE............ceceeceeeeevieeeeceeceeeisssssssseeesssesssssssss s sesssssssssssssss s ssssssssssssssnns 46
Event Class and LISIENer INTETECE...........oooooeeeeereeesssnnes 47
DataValue ClasS DIGGIAIML..........ooovcvceeeeeieeeeeeeceeeesssssssssseessssssssssssssss s ssssssssssssssssssesssssssssssssssannns 47
DataManager Class DIAQraM...............ceevvvvvissssssessssssssssssssssssssessssssssssssssssssssessssssssssssssssnns 48
SWSL SEIVEL DESIGN ...ooreeeeeiisisseseseseeeeeessssssss s sssssssssss s ssssss s 2
Communication FIow of SWSI @EMENLS............cmmmmmmmmmmmmmmmmmsssssssssssssssssssssssssssssssssseeseeees 1
1SOlAOr CONEXE DIAGIAIML.......eeeeeeeeevesseeeeeeeeceesssssss s ssesesssssssssss s ssssssss s sssssss s 3
[SOIEON MAIN TRIAOS..........ooovesssss s ss 4
Dataflow of TP1 Messages bound to SNIF/NCCcieeeeeeessssssssss 6
Flow of TP1 DAS Messages that get stored in SWSI database............ccooooeeevvevvvvvoissssee. 8
Flow of DAS Messages not stored in SWS| database..........oooereeeeeeeeisnneeeeeceeeessssssene 9
Flow of TP1 Common User ReQUESt MESSAQES...............vvvvvveessssssssssssssssssessssssssssssssss 10

Xii 453-SDS-SWSI

Figure5-8
Figure 5-9
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Fgure7-1
Figure 7-2
Figure 7-3
Figure 7-4
FHgure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8
Figure A-9
Figure A-10
Figure A-11
Figure A-12
Figure A-13
Figure A-14
Figure A-15

TP2 DAaflOW MESSAOES.........coiooerrceceeeeiisssseeeeeseeessssss s sssssssssss s ssssssssss s sessssssssssens 12
TP3 Data Flow Of the AlErtS MESSAQES........ccooeecvcvvvvveeesssseseeessssssssissssssssssessssssssssssssssssssssssssssnes 13
SNIF CONEXE DIGOIAIM...........coooeeeerireeeeeeeeeeesssssssssseeeeessssesssssssssssssssssssssssssssss s ssssssssssssssssssssssssees 2
SNIF Level O Data FlowW DIagram..............ccooeeeevvveessess 3
NCCDS Interface Data FlOW DIiagraimy...............ccooeeeeceeesnesesseesssssssssesssesssssssssssssssesse 4
ANCC Interface Data FlOW DI@QIaML.........occcvvvvvvvevvisissseeeeesesssississsssssssseesssssssssssssssssssssssssssssssssnns 9
SDIF CONLEXE DIBGIAIMNL..........oooeeeeeerireeeeeeeeeeeceesssssssssseeeessssesssssssss s sssssssssssssess s sssssssssssssssssssssssssees 1
CONLIOl LOGIC OVEIVIEW.............ooooisreesenesessssvssssssssssssess 4
Detall€d COMIOl LOGIC.......coureeeeeeeeeessssssneeeessessessssssssssssseessees 5
RetrangmMisSon CONrOl LOGICmeereesieesisiissssssseesses 6
SWSI Database Schema (Part L Of 3)cooorrececeeeineeeeeeeeessssssesseeessessssssssssssss e 3
SWSI Database Schema (Part 2 0f 3)ccooreevvviciieeeessssssssssssssssssssssssssssssssssss s 4
SWSI Database Schema (Part 3 0f 3)corcececiineeeceeeeesssssssseeessssssssssssssss e 5
SWSI Datahase TANE VIBWS............ccvvvrerereereeeeesseesseee 6
CommON ClasS DIAgraM L..........ccoorceeeeeeiinseeeeessesesssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssees 5
CommON ClIasS DIGQrAM 2...........coooneeeeeeveeissssssssesessses 6
CommON ClasS DIGOIaM 3..........ccoeeceeeeimsnsseeeeesssesssees 7
CommMON ClasS DIArAM 4..........coooeeeeeeeeveessssssssee s ssssssssssssssssssssssssssssssss s ssssssssssssssssssssssses 8
CommON ClasS DIGOrAM 5..........cooreeceeeeeimmnssseeeeesssesssssssss s ssssssssssssssssssesssssssssssssssssssssssssees 9
SAR CoOMMON ClaSS DIBgIaM........coeeeeeevevvvvvevissssseseeessess 11
SDR COMMON ClaSS DIBGIAIM........reeeeeceeeeeisissseseeeseeseeessssssssssssesssssssssssssssssssssssssssssssssssssessssssees 1
ASAR CommON ClasS DIagram..........ccccoeevevveveissssssessesss 12
RR COmMMON ClaSS DIBGIAIM.............ccciieeeeeeeeeesissssssssseeesssessssssssssssssesssssssssssssssssssesssssssssssssssanns 13
WLR CommOon Class DIaQraiM........cccoceevvvvvvomsneeess 14
MnemonicRequest CommON Class DIagraM...................crreeeeessmsesesssssssssssssssssseeeeees 15
DAS Requests Common Class DIagraiM.........ccoevvvesnessses 16
DAS Availability Common Class DIagramS.......ooooeveecceeeeeeeeeeessssssssssssssessssssssssssssssssseeeees 17
SSC Support CommOoN ClasS DIQIaIMIS...................vceeeseessssssissssssesssssssssssssssssssssssssssssssees 18
DAS GCMR Support Common Class DIagraims.............eeeeeeessmmenessssssssssssssssseeeeee 19

Xiii 453-SDS-SWSI

Section 1. Introduction

1.1 Purpose

This document describes in detail the hardware and software design for the Space Network (SN) Web
Services Interface (SWSI). The primary god of SWS is to provide a standards-based customer
interface for performing Tracking and Data Relay Satdllite (TDRS) and Demand Access System (DAS)
scheduling and red-time service monitoring and control. The intent of the SWS is not to replace
exiding scheduling and red-time systems for dl SN customers. It is rather to provide a smple low-
cost interface option, especialy for suborbital and infrequent SN customers. SWSI does however
provide the primary customer interface for dl DAS customers.

1.2 Background

The interface between a customer Mission Operations Center (MOC) and the Network Control Center
Data System (NCCDS) congsts of formatted messages exchanged eectronicaly using either Nascom
4800 Bit Block (BB) protocol or Transmisson Control Protocol (TCP). This interface is described in
detail in the NCCDS/MOC Interface Control Document (ICD). New SN customers have traditionaly
been provided with a limited number of options for implementing this interface. A full-featured SN
scheduling toal is provided by the User Planning System (UPS), which runs on a Hewlett- Packard (HP)
Unix host. New customers desiring to use UPS for scheduling must either purchase their own system or
interface with an inditutiond UPS located within the Multisatelite Operations Control Center
(MSOCC). A NASA Integrated Services Network (NISN) Closed Internet Protocol (I1P)
Operational Network (IONET) connection is required for the latter option.

No standard option exists to provide a real-time (reconfiguration and performance data monitoring)
interface. All SN customers have been required to implement their own systems at considerable cost.

Prospective SN customers have brought to light the need for a smple, sandard, readily available
interface to the NCCDS. In response to this need, NASA funded an in-house project to determine the
feashility of such atool. This project resulted in a prototype of a web-based cross-platform customer
interface to the NCCDS, cdled the SN Web Services Interface (SWSI). Prototyping and proof of
concept work was completed and has been used to provide support to the Long Duration Baloon
Project (LDBP).

The fina operationd SWS is a follow-on to the prototype effort and will provide improvements in the
form of a Java-based Graphical User Interface (GUI) and better management of user schedule
information. Using the SWSl, SN customers will be adle to perform scheduling, red-time functions,
and state vector storage for only the cost of a desktop computer or workstation. A web browser and a
Javavirtud machine, both of which are fredy available, will dso be required. The SWS is designed to
be accessed from the NISN Closed IONET or Open IONET. NISN’'s Open IONET alows access

11 453-SDS-SWSI

from the NASA Science Internet and the public Internet, thus dlowing cooperation with NASA's
univerdty, enterprise, and inter/intra- agency partners.

In addition to providing this interface to the NCCDS for legacy SN services, the SWS will provide the
customer interface for scheduling the newer DAS Multiple Access Return (MAR) services. The
advantage to the DAS Project is that SWS dready provides the infrastructure needed by DAS to
provide smilar customer interface capabilities. Adding a DAS interface to SWS will spare the DAS
Project the expense of duplicating those facilities and will provide a single integrated application for
customersto perform both legacy SN and DAS scheduling, monitoring, and control.

1.3 Scope

This document describes the proposed design of the SWSI, including the hardware and software
architectures, subsystem designs, and software module definitions. Thisis the primary document used in
describing the design and forms the basis for implementaton of the system.

1.4 Document Organization

This documert is organized into nine sections and four gppendices. Following the Introduction (Section
1), this document presents the SWSl Detailed Design in the following order:

* Dedgn Overview (Section 2)

e Client Desgn (Section 3)

e Application Server Design (Section 4)

* |solator Design (Section 5)

* SWSI-NCCDS Interface Design (Section 6)
* SWSI-DAS Interface Design (Section 7)

e Database Design (Section 8)

e TUT Sever (Section 9)

e Security (Section 10)

e Common Classes (Appendix A)

* Traceability (Appendix B)

» |solator-SNIF Interface (Appendix C)

» Isolator-SDIF Interface (Appendix D)

» |solator Object Types Description (Appendix E)
e SWSI Database Tables (Appendix F)

1-2 453-SDS-SWSI

Abbreviations and Acronyms

1.5 Applicable Documents

1

>

© N o O

10.

11.

12.

13.
14.
15.
16.

Network Control Center Data System (NCCDS) System Requirements, 1998, 530-SRD-
NCCDS/1998

Interface Control Document Between the Network Control Center Data System and
Mission Operations Center, 530-ICD-NCCDS/MOC

Demand Access System (DAS) Systems Requirements Document, 451-SRD-DAS

Interface Control Document Between the Demand Access System and the Space Network
Web Services Interface, 451-1CD-DAS/SWS

NCCDSProtocol Gateway Operator’s Guide Release 98.1, 451-NPGUG/NCC98
High Availability User’s Guide Release 98.1, 451-HAUG/NCC98
NCC Central Delogger (NCD) Operations Concept, 530-NCD-NCC98, May 1997

NCCDS Specification for World Wide Web Server for TDRSS Unscheduled Time and
Nascom Information (Draft), October 1996

Java-based Spacecraft Web Interface to Telemetry & Command Handling (Jswitch)
System Design, August 1999

Java-based Spacecraft Web Interface to Telemetry & Command Handling (Jswitch)
User's Guide, April 2000

NASA Procedures and Guidelines (NPG) 2810.1, Security of Information Technology,
August 1999

NASA Policy Directive (NPD) 2810.1, NASA Policy for Security of Information
Technologyy, October 1998

Security Plan for the Network Control Center, NCC 98, 451-SP-NCC/1998, April 1998
Security Plan for Space Network Web Services Interface, 452-SP-SWSI, May 10, 2000
NASA GS-C Data Systems Technology Java™ Syle Guide, July 1997

IP Operational Network (I0net) Security Plan, 290-003, September 1999

13 453-SDS-SWSI

Section 2. Design Overview

2.1 Overview

The primary function of the Space Network (SN) Web Services Interface (SWSI) isto provide a Java-
based web interface to the NCCDS and to DAS to perform customer scheduling, rea-time service
monitoring and control, and state vector storage. The SWS performs the following mgor functions:

Support al full support customer messages as defined in the NCCDSMOC ICD.
Support al messages as defined in the DAS/SWSI ICD.
Allow acustomer to submit al schedule request messages as defined in the ICDs.

Maintain a database of customer Service Specification Codes (SSCs) that matches the
NCCDS database to assst the customer in generating schedule requests.

Allow for customer maintenance of DAS-specific SSCs.
Provide for customer scheduling of DAS playback events.

Maintain an active schedule file derived from Schedule Result Messages (SRMs) and User
Schedule Messages (USM's) received from the NCCDS.

Provide an Active Schedule display consisting of events for both NCCDS and DAS scheduled
services.

Allow a customer to generate Ground Control Message Requests (GCMRs) and display results
received from the NCCDS.

Allow a customer to generate DAS Service Reconfiguration Messages and display results
recaived from DAS.

For each active NCCDS event, maintain a list of current parameter settings that reflects initid
vaues and any parameters changed in response to User Reconfiguration Regquest messages.

Provide for monitoring of NCCDS and DAS User Peformance Data (UPD) in user-
configurable displays.

Store Return Channd Time Ddlay Messages (RCTDM) and Time Transfer Messages (TTM)
received from the NCCDS in binary files on the customer workstation for later processing by
customer gpplications.

Generate Type 8 (dationary) state vectors based on customer entry of latitude, longitude, and
dtitude and forward them to NCCDS and/or DAS, depending on which system(s) is used to
support that spacecraft.

31 453-SDS-SWSI

Allow a user to import state vectors and forward them to NCCDS and/or DAS, depending on
which system(s) is used to support that spacecraft.

Provide smultaneous access to both the operationad NCCDS and the Auxiliary NCC (ANCC)
for performing Engineering Interface (EIF) tegting.

Allow access from NASA Integrated Services Network (NISN) Closed IONET, Open
IONET, and Internet.

Provide for secure message exchange using encryption

Log al formatted messages exchanged with the NCCDS and DAS, aswdl as significant events
and errors. Provide a delogging capability to dlow an operator to view logs.

Provide a High Avalability (HA) configuretion to adhere to exiging NCCDS
RdiabilityMaintainability/Availability (RMA) requirements.

Provide customer access to Tracking and Data Relay Satellite System (TDRSS) Unscheduled
Time (TUT) information from the Open IONET and Internet.

SWS will not provide any of the shuttle specific support services.

A block diagram showing the high leve SWS architecture is given in Figure 2-1. The architecture is
based on the Java-based Spacecraft Web Interface to Telemetry & Command Handling (Jswitch).

Jawitch performs a smilar function to SWS in that it provides a standards-based secure remote user
interface across open and closed networksto aMOC. SWSI will use a Jswitch backbone with a new
Isolator, an extengvely modified Client subsystem, and an enhanced Application Server.

The SWSl consgt of three components and seven subsystems. The SWSl components are Client,
Open Server, and Backend Server and the subsystems are Client, Application Server, Isolator, SWSI-
NCCDS Interface (SNIF), SWSI-DAS Interface (SDIF), database, and Open TUT Server. The
Client component is the user’s desktop, which can be any desktop that supports Java Virtual Machine
(WVM) 1.2. The Client subsystem is executed on the Client’s component and its main function is to
allow remote users to schedule Space Network resources with NCCDS and to provide Graphical User
Interface (GUI) to monitor status of the scheduled resources.

The second component is the mid-tier server caled Open SWSI Server. It hosts the SWSI Application
subsystem, Open TUT Server subsystem, and other COTS packages; i.e. web server, and security
tools e.g. IP filtering, tcp_wrapper). It is a SUN Ultra 2 sparc workstation connected on the Open
IONet. The main function of the Application Server subsystem is to keep track of the user requests and
provide the requested information to the Client subsystem.

There is a NASA Integrated Services Network (NISN) Secure Gateway between the Open Server
and the Backend Server. The ingtance of the SWS Application Server running on the Open Server
component is for the Open IONet and Internet users. It adso acts a proxy server for the Client
component and minimizes the “holes’ required on the NISN Secure Gateway to support SWSl users.

32 453-SDS-SWSI

The third component is the Closed Server. It is a SUN Ultra 2 sparc workstation connected on the
Closed IONet. It hosts SNIF, SDIF, two instances of the Isolator subsystem and an instance of the
Application Server subsystem. It is dso used as the SWSl database server. The instance of the
Application Server subsystem is for the closed IONet users. One instance of the Isolator connects with
the Application Server running on the Open Server and the other connects with the Application Server
running on the Backend Server.

The Application Server subsystem communicates with the Client and Isolator subsystems via secure
SSL connections. The Isolator communicates with SNIF and SDIF, which will handle dl
communications with the NCCDS and the DAS Controller (DASCON).

The Open Server component and the Backend Server component consdts of two physica hogts for
redundancy. The Backend Server contains SWSl data including user’s information in the shared
database storage. The Backend Server is respongble for al communications with the NCCDS and
with DASCON.

33 453-SDS-SWSI

DASCON

Secure Gateway

2
o]

vv
5%
elet

-
oz
1

—
o
X XX

s

Iy
e

--
oo,
e

%
ok
6%

"
(>

--

%

-
x>

-
T
5

o

vvvv
e,
ket
BSatetet,

L
Iy
e

o
0.1

s

,.
o
e

-
o
..

3
Tete

2!

vv
X
o

-
T
5

—
o

s

T
oS
Teteteletet

s

s
12

"
(>

o

o,

N
(0

"
(>

—
o
X X

o

iy
%%

-v
oo
o

—
o

s

Iy
e

-v-

o,

N
.

"
(>

—
o
X X

o

iy
et

4

--
oo
e

>

3
%

2!

vv
%
Tetel

-

%

!
!

"
o

—
.
(>

vv
5
L%

o

Application

Application

et
Server Server :::::::
(Open (Open [
ifeted
Clierts) Clients) :::::::
P:’:’ﬁ [C_Iosed (C_Iosed
[Clierts) Clierts)
TUT Tut b
wehsarver wehserver b lzolatar lzalator
[Cloged [Cloged
Clierts) Clients)
Sl Open Server WS Open Server
(Prime) [Brackup) IE:SIator I(aglator
pen pen
Clierts) Clierts)
T
YS! Backend Server] SWS] Backend Server
(Prime) Da (Backup)
—_

Figure 2-1 High Level SWSI Architecture

2.2 System Environment

This section describes the environment in which the SWSl operates and briefly discusses the
interactions with externa systems with which the SWS interfaces.

Network Control Center (NCC) Data System (NCCDS) Oper ations

The NCC sarves as the central control facility of the Spaceflight Tracking and Data Network (STDN),
which consists of the Space Network (SN) and Ground Network (GN). The SN includes the Tracking
and Data Rday Sadlites (TDRSs) and two ground terminas, the White Sands Ground Termind
(WSGT) and the Second TDRSS Ground Terminal (STGT). The NCC schedules, controls, and
enaures the rdiability of the SN. The SWS communicates with the operational NCCDS on behaf of
SWS customers through implementation of he NCCDS/MOC Interface Control Document (ICD)

34 453-SDS-SWSI

protocol. All communications use Transmisson Control Protocol (TCP) and are limited to those
messages designated for full support customers.

Auxiliary Network Control Center (ANCC)

The ANCC sarves primarily as a test facility for testing new NCCDS software releases and for
performing Engineering Interface (EIF) tests with customer MOCs. It dso functions as a backup facility
to the operational NCC should facility evacuation be required. The SWSl will interface to the ANCC
to dlow SWS customers to perform interface testing.

Service Planning Segment Replacement (SPSR)

The SPSR is the primary NCCDS subsystemn used for performing SN service planning. SPSR receives
and vaidates customer service requests, generates and maintains the schedule, and disseminates the
schedule to the appropriate SN dements and customers. The SPSR a0 receives acquisition data from
the Hight Dynamics Facility (FDF) and SN customers, stores the data, and disseminates acquisition
data to WSGT and STGT. The SWS maintains TCP connections with SPSR for performing
scheduling and vector storage on behdf of each SWS customer.

Communications and Control Segment (CCS)

The CCS is the primary NCCDS subsystem used for performing SN service control and service
assurance. Customers are able to perform red-time reconfiguration of an ongoing service through the
use of Ground Control Message Requests (GCMRs). CCS is used to monitor the performance of
active events and passes this information to aistomers in the form of User Performance Data (UPD)
messages.

NCCDS Protocol Gateway (NPG)

The NPG performs message protocol trandation between legacy entities that communicate in 4800 BBs
and newer entities that use TCP messages. Since CCS communicates using 4800 BB protocol and the
SWS communicates usng TCP, the SWS will establish redl-time connections with the NPG, using the
NPG asa TCP proxy for the CCS.

NCCDS TDRSS Unscheduled Time (TUT) Server

The TUT World Wide Web (WWW) Server provides information about unscheduled TDRS
resources. It congsts of start and stop times of unscheduled use of the Single Access (SA), Multiple
Access Forward (MAF), and S-band Multiple Access Forward (SMAF) antennas, and Multiple
Access Return (MAR) and S-band Multiple Access Return (SMAR) links for each TDRS. Thisdatais
essentidly the unused time in the schedule, with a few adjusments due to flexible events with flexible
gart and stop times and/or flexible resources. The NCCDS TUT Server provides this service anly to
customers located on the Closed IONET.

Demand Access System (DAYS)

The DAS expands the existing TDRSS Mulltiple Access Return (MAR) capabilities by building upon the
Third Generation Multiple Access Beamforming Subsystem (TGBFS). The exising TDRSs provide
pre-scheduled communication service to customers by using ground-based electronics to process
ggnas emanding from customers that are rdayed by the TDRS on-board phased array antenna

35 453-SDS-SWSI

sysems. The TGBFS expands the capability of the TDRSs MAR system and will dlow service to be
provided on a demand basis rather than on a pre-scheduled basis.

DAS Controller (DASCON)

DASCON is respongble for scheduling and controlling al DAS-related hardware at the White Sands
Complex (WSC). The SWSI communicates with the DASCON on behaf of SWSl customers through
implementation of the DASSWS Interface Control Document (ICD) protocol. All communications
use Transmission Control Protocol (TCP).

NISN Secure Gateway

The NISN Secure Gateway is a rule-based firewall used to prevent penetration of hosts on the Closed
IONET from less secure networks. A smal number of rules is used to dlow connection between the
Open Server and the Backend Server components. All message traffic will be channeled through this
path using encrypted Secure Socket Layer (SSL) connections. The rule set will remain gatic, meaning
that Secure Gateway changes will not be required in response to SWSl customers being added or
removed.

Mission Operations Centers

All the SN customers are responsible for the design, development, maintenance, and operation of their
own Misson Operations Centers (MOCs). SWSl users are required to provide workstations
(desktops) within their MOCs to connect to and operate with the SWSl servers located on ether the
open or closed networks. Minimum workstation requirements include a web browser and a Java
Virtud Machine (VM) verson 1.2. A Java Client subsystem will be provided by SWS to the user to
dlow him/her to connect to the Application Server using SSL-encrypted connections. The Client
subsystem will adso provide the user-interface and dl displays required by the customer to perform
SWSI-rdated functions.

2.3 SWSI Platform

The Application Servers are hosted on Sun Ultra 2 Sparc computers, each initidly configured with a9
Mbyte hard disk and 128 Mbyte RAM. Quad network interface cards provide redundant heartbest
interfaces for aHigh Availability (HA) configuration. The operating system leve is Solaris 2.7.

2.4 Software Overview

There are seven subsystems of the SWSl as shown in the high level data-flow diagram in Figure 2-2:
Client
Application Server
|solator
SWSI-NCCDS Interface (SNIF)
SWSI-DAS Interface (SDIF)
Database
Open TUT Server

36 453-SDS-SWSI

DASCON

ARCC

MNCC

: TCP port (ML)

RCTOM, TTH

S

TEW, S

anfiection

SIS Database
[Cracle 8.1.6)

RCTOM, TTH

Server

z TCP port
= -
= : 120LATOR
L TP et Ll
Application L E ToP port
)
—
o
ol

o Log Fike

TUT Server
hazed on

weh server

Figure 2-2 High Level SWSI Dataflow Diagram

37 453-SDS-SWSI

The SWSI desgn relies primarily on Java supplied Application Programming Interfaces (APIS) to
provide the data encapsulation, transport, and routing mechanisms. This "Pure Java' backbone dlows
for the widest possble use among platforms (platform independence). The use of Java dlows the
design and condtruction of platform independent user-interfaces usng standard GUI components such
as labds, text-fields, buttons lists, and drop-down boxes. It dso ensures safe network deivery,
dreamlines software development and deployment, and reduces product development life cycles.

Furthermore, use of the JavaBean component- based architecture allows for expandability of the system.
JavaBeans will be used as the GUI components in the Client application.

1) SWS is a multi-tiered architecture usng a Java gpplication for the front end. This front end is
referred to as the Client subsystem and can run on any computer, which supports Java Virtua
Machine (JVM) for DK verson 1.2. The instance of the Application Server that runs on the Open
Server (Sun Ultra 2 Sparc computer running Solaris 2.7) acts a proxy server for the Client
subsystem. The Application Server listens on one port for the Clients to edtablish a secure
connection with the Application Server. The Application Server listens on three ports for the
Isolator to establish secure connections. See Table xx for details of how the ports are used.

The Isolator communicates with the SNIF using User Datagram Protocol (UDP) and with the SDIF
using Transmission Control Protocol (TCP). The types of messages between the Isolator and the SNIF
and SDIF are Key Info, File Info, Alerts, and actual NCCDS and DA S messages.

The SNIF will establish connections and communicate with the NCCDS using the protocols and
message formats as defined in the NCCDSMOC ICD. The SDIF will establish and communicate with
the DASCON using the protocols and message formats as defined in the DAS/'SWSI ICD. The SNIF,
SDIF, and Isolator will work in tandem on one platform, with a second set of these subsystems running
as a hot backup on a second platform.

There are two operational modes. normal and test. In norma mode NCCDS requesdts are sent to the
operational NCCDS. The test mode provides access to the ANCC for performing EIF tests. This
implies that a separate database instance is kept to test with ANCC. This database instance may have
different data. Users will select test or norma operationd use a login. No communications will be
established with DASCON to support test mode. DAS requests will smply be stored in the test
instance of the database to support DAS user training.

The system will aso include a World Wide Web (WWW) server to view TDRSS Unscheduled Time
(TUT). Currenty, the TUT informétion is only available to users on the Closed IONet. TUT information
will be mirrored on the Open SWSl Server’sweb server where users can view thisinformation.

2.5 Development Approach

2.5.1 Standards/Methodology

Since SWS is an extenson of the Jswitch system, much of the design dready exists and will be reused,
with the following exceptions.

3-8 453-SDS-SWSI

New common classes will be defined.
A new Isolator will be devel oped.

The Application Server will be mostly reused with some modifications and enhancements as
previoudy discussed. The existing Application Server design will be used with the new JAVA
components following the design of smilar existing JAVA components.

The Client gpplication will be reused with extensve modifications to customize the user interface
for SWSl. Since these modifications will only effect the placement of functiondity (eg. user
login) within the user interface or will be an extenson of the user interface, most of the exiting
design can be reused. New pands, subpands, windows, or beans (as previoudy defined) will
each be a separate SWSI class. Subpanels may get placed into subpackages if this provides
some benefit.

Java development will follow coding sandards origindly developed by the NASA/GSFC
Data Sysgems Technology Divison in July 1997. These dandads may be found at
http://aaaprod.gsfc.nasa.gov/styleGuides/JavalJava.html.

2.5.2 Development Environment

SWS will be developed a& GSFC Building 12, Room N12, which is a keycarded facility. All
development personnel must have an appropriate security clearance in order to work on this project.

Development will be done on a Sun workgtation running the Solaris (UNIX) operating system. Testing
of the Client gpplications will aso use Windows 98 platforms.

An /export/home/sws directory will be created, under which the following subdirectories will be placed:
dev, test, cm, and ops. Thisis shown in Figure 2-3. The subdirectories will follow the Java package
naming standard. For SWS, this will be gov.nasa.gsfc.swsi, with subpackages for the common
classes and each of the subsystems. The Jswitch code will also be kept under the dev subdirectory for
reference and to facilitate reuse. There will dso be an /export/home/cots directory under which will be
Phaos, JDK, and Infobus. The location of Oracle will be probably be loaded under the
/export/homel/cots directory. Finaly, the Gnu's Not UNIX (GNU) C Compiler (GCC) and some
security packages (tcp wrappers and ip filters) will be subdirectories under /usr/local/bin.

39 453-SDS-SWSI

SWSi cots

I I I I I I I
dev test cm ops Phaos JDK Infobus

SWSiI
|
I I I I I I

client server isolator common snif sdif

Figure 2-3 SWSI Development Directory Structure

Source code configuration management (CM) will use Concurrent Versons System (CVS), asused in
another NCC project. CVSisbased on Revison Control System (RCS). CM may reuse scripts from
the Jswitch project.

2.5.3 Development Tools and Software

Graphics Designer Professond (GDPro) by Advanced Software Technologies, Inc. will be used as a
design tool. GDPro will be used to create a sdected subset of Unified Modding Language (UML)
diagrams including Use Cases, Sequence Diagrams, and Class Diagrams. These are given in the
appendices.

The Integrated Development Environment (IDE) JBuilder Professond will be used. Thistool provides
the following capabilities:

Source code editing

GUI design and layout

Rapid compilation and dependency checking

Debugging
Entire subsystems may be built within JBuilder to alow use of the debugger. Since the debugger dlows
multiple debugging sessions, this can be used to test subsystem interaction.

JBuilder alows user defined JavaBeans to be placed on the component palette. These can include GUI
beans or container classes.

310 453-SDS-SWSI

Other support software will include:

Operating System SUnOS 5.7 (known as Solaris 2.7, dso known as Solaris 7)

Sun Professional Developer Suite (SunProWorkShop) - containstools (i.e. compiler, debugger)
for C gpplication development

Oracle Server (Release 8.1.6)

Oracle Pro*C (Release 8.1.6.0.0)

Java 2 Standard Edition Release 1.2.2 (free)

HotSpot version 1.0.1 (free)

InfoBus version 1.2 (free)

Phaos SSLava Toolkit version 1.11

Phaos JCA Toolkit (for digita certificate generation) (For Build 1) to be replaced by NASA
supplied Entrust Certificate

Oracle supplied JDBC Thin Driver

GNU tools: GNU C Compiler (GCC) version 2.95.2, GNU Debugger (GDB) version 4.18,
Data Display Debugger (DDD) verson 3.1.3

TIBCO Extengbility TurboXML

XML Parser (free)

311 453-SDS-SWSI

Section 3. Client Design

3.1 Overview

The Client software is developed in Java and uses the Swing components of Java 2 to build a Graphica
User Interface (GUI). JBuilder is used to build some of display panels. Most of the display pands have
awindow frame. At the uper right corner of the window frame there are three window control buttons:
minmize, maximize, and exit. By clicking on these buttons, the user can iconify, uniconify, and close the
disolay pand.

The Client subsystem has a Data Manager, which is responsible for establishing a secure connection
with the SWSl Application Server. Each of the Client component panels will go through the Data
Manager to send and receive data. The Client will obtain dl the satic data it needs from the Isolator
through the SWSI Application Server using slandard mnemonic requests. This Static data will be used
to present options to the operator. The displays that will be user cusomizable include the User
Performance Data (UPD) displays.

The Client gpplication will kegp a time-tagged log of requests sent and messages received. This will
include Ground Control Message Requests (GCMRS) and responses and acquisition failure messages,
but not UPDs. Client events would aso include when connections come up or down.

3.2 Use Cases

Since the SWS is implemented usng JAVA adong with SQL and C, an object-oriented andyss ad
design (OOAD) methodology is the best choice for documenting dl phases of software engineering
activities. The Unified Modding Language (UML) for use in OOAD provides al required tools to
perform requirement andysis, system design, coding and testing.

Use-case modding tool is used to describe what a new system should do or what an existing system
dready does. As shown in Figure 31 is a use-case diagram for the SWSI. In the object-oriented
paradigm this diagram depicts a user view of the overal SWSI system+-leve functions and requirements.
This view aso exhibits interactions between SWS and its user and adminigtrator. All use cases are
represented by dlipses. User and administrator are shown by actor symbols.

31 453-SDS-SWSI

»-_Generate Schedule@
e

Generate GCMRs
rry
O e n
- Monitor UPD

L
L—p ubmit State Vectors r

e Usorcontrol_ D Logout
> Batsws
> Current GMT >

% InfurmatiD—l_[} ._[
=

Figure 3-1 SWSI Use-Case Diagram

Add User)

ynchronize Database

Q@

i Select Service Type
Display UPD

Admjnistrator

All the use cases for NCCDS support are described in Table 3-1.

32 453-SDS-SWSI

Use Case

Description

View Schedule Requests User can view dl types of schedule requests including Schedule Add
Requests (SARs), Replace Request, Alternate SARs (ASARS),
Deete Requests and Waitlist Requests. Detalled functiondity is
described in Figure 3-2 and Table 3-2.

Generate Schedule Requests | User can generate any types of schedule requests. Detalled
functiondlity is described in Figure 3-2 and Table 3-2.

View Active Schedules User can view dl active schedule events that have been accepted and
gpproved by NCCDS. Detailed functiondity is described in Figure 3-
2 and Table 3-2.

View Alets User can view al levels of dertsissued by NCCDS or any other
System sources.

Generate GCMRs User can create and submit Ground Control Message Requests.

Monitor UPD User can sdect Service Type;, User can display UPD.

Submit TSW User can submit TDRS Scheduling Windows.

Submit State Vectors User can create and/or submit Improved InterRange Vectors (1IRV).

User Control User can enter (login) SWSI Application Server by typing user 1D,
password, passphrase, and SWSI Application Server port number;
User can disconnect (logout) SWSI Application Server;
User can exit SWS.

Information User can see current GMT time;

User can view SWSl help information including User’s Guide;
User can view information about SWS.

SWSl System maintenance

Adminigtrator can add user;

Administrator can remove User;

Administrator can synchronize SWSI database with NCCDS
database.

Table 3-1. Use-Cases and Descriptions

Use cases (1), (2), and (3) are extended to show more details in Figure 3-2. Application Server, a
SWSI subsystem, is an actor to provide retrieved data to be used by these cases.

33 453-SDS-SWSI

Show Schedule
Requests

Wiew Schedule
Requests

Wiew Schedule
Request Details

T enerate 3 Schedule
Dielete Request
s Generate a Schedula
idd Request [5AR]
R

ererate 3 Replace
Request

- enerate an Alternate
Request

Generate Schedula
Requests

e emerate 3 Waitli
Request

Wiew Active Events

Retrieve Schedule

Retrieve Schedule

Requests

Request Details

[

PackageMame: S8R Evert Handler

S8R Evert Handler

Application Server

Retriewe Aedive
Everts

—

enerate 3 Replace
Wiew Aotive Request
Schedules

PackageMarne: S0F Evert Handler

1= Delete fctive Everts

Figure 3-2

S0R Evert Hamdler y

Retrieve Evart
Details
Generate GCMR

SWSI Extended Use-Case Diagrams

All extended use cases for NCCDS support are described in Table 3-2.

34

453-SDS-SWSI

Use Case Description

View Schedule Requests This use case shows dl schedule requests using data retrieved by
SWSI Application Server;

This use case dlows user to sdlect a schedule request and view its
details that are retrieved by SWSI Application Server.

Generate Schedule Requests | This use case dlow user to perform following tasks viaan Event
Handler Package that communicate with SWSl Application Server:
Generate a Schedule Delete Request;
Generate a Schedule Add Request (SAR);
Generate a Replace Request;
Generate an Alternate Request;
Generate a Waitlist Request.

View Active Schedules View dl Active Schedule Events thet are retrieved by SWS
Application Server;
Sdect an Active Schedule Event and view its details thet are retrieved
by SWSI Application Server;
Allow user viaan Event Handler Package, which communicates with
SWS Application Server, to perform following tasks:

Generate a Replace Request;

Delete Active Schedule Events.

Table 3-2. Extended Use-Cases and Descriptions
The two use-case diagrams above document al SWSl functiondity and requirements for subsequent
development activities including design, coding and testing.
3.3 Client User Interface

3.3.1 Main Panel

Figure 3-3 shows the main pand layout. The man pane will include colored connection status
indicators, showing the connection status of the Application Server, Isolator, SNIF and SDIF.

User Scheduling Control/fMonitor State Vector Admin Time Help

Figure 3-3 Main Control Panel

35 453-SDS-SWSI

Figure 3-4 shows the menu options provided by the main pand. The NCC and DAS menu options are
submenu titles giving access to NCC and DAS specific capabilities. The pand menu options will be
disabled until a connection to the Application Server is made. The * Preferences’ options dlow the user
to select between the standard Javalook and fed settings. Only the supported look and feel options for
that platform will be enabled.

SWS

User Scheduling Control/Monitor State Vector Admin Time Help
Log-in NCC > Alerts Import Edit SSCs § GMT Clock # User’s Guide
Log-out | Create SAR UPDs Generate Stationary Local Clock § About SWSI
Preferences I | TDRS Scheduling Window I
Exit I DAS >

| Resource Availability

| Request

| Create RAR

| Playback Planning
Schedule Request Summary
Active Schedule Summary

Figure 3-4 Main Control Panel Menu Options

The Scheduling, Control/Monitor, State Vector, and Admin menu items on the main control pand will
be disabled until the user has logged in. After the user has logged in, these menu items will become
enabled, dlowing the user to select a pane for that mission.

The DAS specific options would only be available if the one or more of the SICs assigned to that user is
flagged as being DAS enabled in the SWS! database (i.e., the menu options will be disabled for users
with dl nonDAS SICs). Likewise, a smilar flag and redtrictions would exist for NCC capabilities.
This would alow a user to be grictly a NCC user, DAS user, or a combination of both. Findly, the
Admin options would only be avalgble if the user is flagged as a DAS misson adminidrator in the
SWSI database.

All times entered or display will be in GMT as year, day of year, hours, minutes, and seconds in the
form yyyydddhhmmss.
3.3.2 Login Panel

Sdecting Log-in results in the connection parameters pand being displayed, which is shown in Figure 3-
5. Thisisthelogin screen for the SWS Server. This pand contains text boxes for the following:

Host - Shows the IP address of the Application Server (this option will be pre-set from the
properties file and will be“grayed-out”, i.e., input will be disabled)

Port — Shows the port on which the Application Server will be listening for Client connections (this
option will be pre-set from the properties file and will be “ grayed-out”)

User Id — Enter the identifier assigned to the user to log on to the Application Server

36 453-SDS-SWSI

Password — Enter the password assigned to the user to log on to the Application Server. For
Security purposes, each password character will appear as an asterisk asit is entered.

Passphrase — Enter the passphrase for the security certificate vaidation. This extralevel of security
vaidatesthat the user truly is authorized to access the SWSl Server

Additiondly, the panel contains options for a norma or test (EIF) mode connection, and options to
initiate a password and/or passphrase change.

[T |

Figure 3-5 Connection Parameters Panel

The Ladt login digplays the date of the last time a login to the SWSl Server was attempted and the
number of failed login attempts since the last successful login.

At the bottom of the Connection Parameters Pand are buttons labeled Login, Logout, and Done. The
functiondity of each is described below.

Log-in

37 453-SDS-SWSI

The Log-In button is used to establish a connection between the Client and Application Server. If the
Client is not currently connected to the Application Server, the log-in button is active. After entering
log-in informeation, dicking on the login button initistes alog-in atempt to the Application Server. Upon
successful connection, the Application Server, 1solator, SNIF, and SDIF connection states displayed on
the Main Control Panel turn from red Disconnected to green Connected. A Warning didog box with
the following message is d o displayed:

This machine is connected to U.S GOVERNMENT RESOURCES. If not authorized to access
this system, disconnect now. YOU SHOULD HAVE NO EXPECTATION OF PRIVACY. By
continuing, you consent to your keystrokes and data content being monitored.

Clicking OK closes the didog box. Clicking Cancel returns back to the Connection Parameters Pandl.
If an Error didog box is displayed due to the user entering invalid log-in information, dicking on OK
closes the didog box. After correcting erroneous log-in information, click on the log-in button again.
Check that the entered host, port, user-id, and password information are correct in the event no
connection can be made, an Error dialog box with the following message is displayed:

No connection could be made to host < host ip address> at port <port number>.
L og-out

Clicking on an active logout button disconnects the user from the Application Server. The log-out button
is active if the labd text is black (i.e. the Client is ill actively connected to the Application Server).
After the connection between the Client and Application Server has been terminated, the SWSI Server,
Isolator, SNIF, and SDIF status boxes on the Main Control Panel turn from green Connected to red
Disconnected.

Done

Clicking on the Done button removes the Connection Parameters Panel from the screen.

3.3.3 Schedule Request Panels
Schedule request panels permit the user to request SN resources and the NCCDS to schedule them.

The NCC Schedule Request Pandls are made up of the Schedule Add Request (SAR) Pandl, Schedule
Delete Request (SDR) Pandl, Alternate Schedule Add Request (ASAR) Panel, Replace Request (RR)
Panel, and the Wait List Request (WLR) Panel. Two additiona panels are used to support the SAR,
ASAR, and RR pands. They are the Service Fexibility and Respecifiable Parameters Pands. All of
these are discussed in sections 3.3.3.1 through 3.3.3.5.

DAS Schedule Request Pands consst of the Resource Allocation Request (RAR) Pand and the
Resource Allocation Modification Request (RAMR). These are discussed in sections 3.3.3.6 through
3.3.3.7.

3-8 453-SDS-SWSI

3.3.3.1 Schedule Add Request (SAR) Panel

Spacecraft events are scheduled by the NCCDS in response to auser’s SAR. Each SAR designates a
combination of support configurations in a particular time sequence for a specific duration. The design
of the SAR Pand is shown in Figure 3-6.

Opangd M3 T0 4607
MpEsage Hiee BaR Renuest D Egdanaion
-
BLPCEN [armace |= RS [Far -
RukterosFlagquestD Pl 1 - -
Prolokme Evunte ® G5, A
Hame | Tesi | FomineiEvenisgatTims (oo lzas (A e 41l Frasz nkmal 126 0] oo dad e
Ll INAF oy el {5
B |WAR Hormal !
Hil1 | GBAF hommnsd |
HO2 |SBAF Mo Plis Tolaranca (o {om ot Ealbe | 1'ak Listitun schaduied
HO3 SEAF Feomnal
Hild |58AF Pl
HOS T |
e P T S b |
41 i MiEws Tolsange [0 oo i sl e 1 Lize T e n cormbmn zrheduling
Senice Request
Hurifes SEE _ EapeaTyme | Momnalsted . Homing Coeslion GEN A SGHER 1A oapanes | ciToieranes | sedmum Durcagon |
o1 an MEF Momal D0 oooa oraloa ooo ona o000 o0.00a0 Doof g |:
anz2 B WA R I 000 o0 00 0nn i RN L] 00000 R
i3 T Tracking Mol n O Q00 0o (i]i] IR TTH] (TR [
] (L3
Renmies 1ARE LD | Mo [| Ramiee all Woily Serica Fatamalers
Bubmi Carwnl

Figure 3-6 Schedule Add Request Panel

The SAR Pand will be used in viewing previoudy scheduled requedts, “cloning” previoudy scheduled
requests, or, generating new requests. Viewing a previoudy scheduled request involves sdecting a
request from the Schedule Requests Panel and pressing the “View...” button. Once this occurs, the
Schedule Request Pand invokes the SAR Pand passing dong as an argument the SAR object (see
class diagram) associated with the sdected request. The SAR is then displayed with al fields disabled
so that no updates are made to the request. Cloning a previoudy scheduled request involves sdecting a
request from the Schedule Requests Pand and pressing the “Clone’ button. Doing this invokes the
SAR Pand passing dong as arguments the SAR object associated with the sdected request and aflag
indicating thet the intent isto “clong’ an exising SAR object. New SARs may then be created using the
exiging SAR’s vaues as defaults. Generating a completdy new request involves ether sdlecting the
“SAR” menu item from the Main Control Pand. The SAR Pand is invoked without any arguments
dlowing auser to generate a SAR.

39 453-SDS-SWSI

To generate a SAR the user would first select a SUPIDEN from the drop-down ligt shown on the
pand. This lig of SUPIDENS is pat of the daic data sent to the Client gpplication a login.
Specificaly, a vector of SUPIDENS is retrieved from the user’ s SetupObject using the DataManager’ s
getSupidenList method. The list of available SUPIDENS is based upon the user, meaning only the
SUPIDENSs available to that user will be shown in the list.

The ligts of service specification codes (SSCs) and prototype events are al dependent on the SIC,
which can be obtained from the SUPIDEN sdlected. These lists (vectors) are obtained from the user’s
SetupObject using the DataManager’s getSSCList and getPrototypeEventList methods. The ligt of
TDRS IDs is independent of the SIC and system id (NCCDS/DAS). This list is obtained from the
user’ s SetupObject using the DataManager’ s getTdrsl ds method.

The Request ID vaue fidd is disabled with an initid vaue of “0000000” when generating a SAR. A
SAR’'s Request ID is assigned by the Isolator.

The user may add a prototype event to the SAR by pressing the “Prototype Events’ radio button and
sdecting a prototype event from the available list. Upon doing so, the “Service Request” labd is
renamed to “Prototype Event”. Only one prototype event may be added to the list of services. Note
that for prototype events, the services cannot be modified in any way.

HDS: In contrast to adding a prototype event, the user may add an SSC to the SAR by pressing the
“SSC” radio button and selecting an SSC ID from the available list. Doing so populates the list of
sarvices with a service number, SSC ID, service type, and service flexibility parameters as described
below for the sdlected SSC. Up to a tota of 16 SSCs may be added to the list of services for a
particular SAR. Services are added in an incrementa order beginning with “1” on a firs-selected, firgt-
added basis. However, services may be reordered. To reorder a service, sdect the service to be
moved from the Service Request list and press ether the “Move Up” or “Move Down” button. The
selected service' s location in the list changes depending on which button was selected and al affected
sarvices are renumbered according to the selected service' s new location

Service respecifiable parameters are used in the SAR to change the initid vaues of certain dataitemsin
one or more SN sarvices. The sarvices may be modified by sdlecting an SSC and pressng the
“Parameters...” button. This invokes a pand (see Figure 3-7) where parameter values for the sdlected
service may be respecified, thereby overriding the initid values of the dataiitemsin the service.

310 453-SDS-SWSI

Eg} KASAR

TSW Set 1D
Bata Rate; | Channel (DG1/DG2), Hormal User hps
Data Rate, Q Channel (DG1/DG2), Normal Lser lips
Transmit Fregquency, Nermal User Hz

Palarization, Normal User|

Maximum EIRP, Nermal Liser BV
Minimum EIRP, Normal liser B

'@ Enahle
Autotrack EnalileDisable]
. Disahle

1/ Channel Power Ratio (N:W), Nermal Liser ||IB

8 NRZ.L
i NRZ-M
|~ NRZ-S
! Biphase-L
! Biphase-M
| Biphase-S

Data Format, | Channel (DG1DG2), Normal Lises

%) NRZ.L
) NRZ-M
) NRZS
) Biphase-L
" Biphase-M
" Biphase-S

Data Format, Q Channel (DG1/DG2), Normal Liser

'8 None
Data Bit Jitter, | Channel (DG1/0G2), Mormal User|-) 0.01%
i 01%

[i‘ Nnng I

Cancel ” Submit- |

4

Figure 3-7 Example of respecifiable panel alone for KaSAR service

Savice flexibility parameters may be modified by sdecting an SSC and pressng the “Modify
Service...” button. This invokes a pand (see Figure 3-8) where data items such as service art times
reldive to the SAR's requested gtart time, service durations, plus and minus tolerances on the relative
service gart times, and minimum service durations may be changed. Additiondly, this pand permits the
user to specify the tart of a service relative to the start of another service rather than rdative to the
SAR gart time.

311 453-SDS-SWSI

E%%Edit Service Flexibility Parameters

| SURIDEN A0338CS service Murmber 0071

535 A Feguest|D 50007142
Nominal Start i
Norninal Duration 00 {01 {00! {4l
Plus Talerance {00l (0o [oo] [all+
Minus Tolerance 0d] @ 00/ [lal]¥]
[Minimun Cidratian 00 (0] [o0] &l w

[_1 Coupled Service Mumber (CSH)

[_] Service Bounded By Service Mumber (SBSMN)

Ipdate Cancel

Figure 3-8 Edit Service Flexibility Parameters Panel

Upon completion of entering data for the SAR the user would press the “ Submit” button on the SAR
pand. This packages the data into a SAR object as seen in the SAR class diagram (see Appendix A),
and transmits the object to the Isolator via the Server using the DataM anager’ s sendObject method.

3.3.3.2 Schedule Delete Request (SDR) Panel

An SDR permits a user to request the NCCDS to delete a scheduled spacecraft event or a schedule
request.

To generate an SDR for a scheduled spacecraft event the user would sdlect the event from the Active
Schedule pand (Figure 3-13) and press the “Delete’ button. Upon confirming the deletion an SDR
object would be transmitted using the sendObject method. The SDR object would contain the message
class, request ID (unknown until the request is tranamitted by the SNIF), reference ID of the event to be
deleted, and SUPIDEN. To generate an SDR for a schedule request the user would select the request
from the Schedule Requests pand (Figure 3-11) and press the “Ddete’ button. Similarly, upon
confirming the deletion an SDR object would be transmitted using the sendObject method. The SDR
object would contain the message class, request ID (unknown until the ID is assigned by the Isolator),
reference 1D of the schedule request to be deleted, and SUPIDEN.

312 453-SDS-SWSI

A user may view an SDR from the Schedule Requests panel. To do so, select the request whose status
fied indicates “ Deleted” and pressthe “View...” button. The request would appear in an SDR pane as
shown in Fgure 3-9.

[£3 Delete Request =]
' ReguestICr G000170 Explanation '

A

| Refarenced Request | 9000168

4

SURIDER AS9501MS

Claose

Figure 3-9 Delete Request Panel

3.3.3.3 Alternate Schedule Add Request (ASAR) Panel

The ASAR format is dmogt the same as the SAR format but alows for reference to a SAR, a Replace
Request, or another ASAR queued for batch processng. Along thet line the ASAR pand is nearly
identica to the SAR pand except for the SUPIDEN, priority fields, and the “Wait List if unscheduled’
flag, which will be “grayed-out”. ASARSs inherit these fidds vaues from the referenced requests and
hence these fields are disabled on the ASAR pandl. To create an ASAR a user would sdlect the
reference request from the Schedule Requests panel and press the “Generate Alternate...” button. A
pane smilar to the SAR pand (see Figure 3-6) would appear and the user would be alowed to modify
the sdlected request’s information except SUPIDEN and priority. Upon completion of modifying the
data the user would press the “Submit” button, packaging the data into an ASAR object (see ASAR
class diagram, Appendix A) and transmitting the object to the Isolator using the sendObject method.

3.3.3.4 Replace Request (RR) Panel

The RR format is dmost the same as the SAR format but alows for replacement of a scheduled event
by another event or for replacement of a SAR, ASAR, or RR. Along that line the RR pand is nearly
identical to the SAR pand except for the SUPIDEN and priority fidds. RRs inherit these fidlds values
from the referenced requests and hence these fidlds are disabled on the RR pand. To create an RR a
user would select the reference request from the Schedule Requests panel or Active Schedule pand and
press the “Generate Replace...” button. A pand similar to the SAR panel (see Figure 3-6) would
gppear and the user would be alowed to modify the selected request’s information except SUPIDEN
and priority. Upon completion of modifying the data the user would press the “Submit” button,

313 453-SDS-SWSI

packaging the data into an RR object (see RR class diagram, Appendix A) and transmitting the object
to the Isolator using the sendObject method.

3.3.3.5 Wait List Request (WLR) Panel
The WLR refers to a declined request and requests that it be placed on the NCCDS Wait List.

To create a WLR a user would sdlect the reference request from the Schedule Requests pand and
press the “Generate Wait Lid...” button. This action would invoke a Wait List Request pand. This
pand displays information about the request being generated and dlows the user to modify the time that
this request will expire and be removed from the wait list. Pressing the “ Submit” button would package
the information into a WLR object (see WLR class diagram, Appendix A) and transmit the object to the
Isolator using the sendObject method. The design of the WLR pand is shown in Figure 3-10.

E:j Create Wait List Hequest [|Of =]
' Reguest D 13l Explanation :

F

| Refarenced Request | 9000108
SUPIDEM A3501MS
Expiration Time 2000} [233] 120/ (48] [41] [l =]

1

Subrmit cancel |

Figure 3-10 Wait List Request Panel

A user may aso view an exising WLR by sdecting the request on the Schedule Request Panel and
pressng the “View” button. This would invoke a WLR Pand smilar to Figure 310 except for the
following changes. The Expiration Time field would be disabled not alowing user input; the Request ID
vaue field would list the actud 1D from the Schedule Request Pandl; the * Submit” and “Cancd” buttons
would be replaced with a “Closg’ button; and, the title would read “View Wait List Request”. The
following figure ligts the congructors used to invoke the WLR Pandl.

WaitListRegFrame(SAR sarObject, boolean toView) //if toView=true then view
WaitListRegFrame(RR rrObject, boolean toView) Il else create WLR

314 453-SDS-SWSI

3.3.3.6 Resource Allocation Request (RAR) Panel

An RAR dlows a DAS customer to request DAS resources. The design of the RAR Pand isshownin
Figure 3-11. The congtructors used to invoke the RAR Pand isasfollows:

ServiceAllocationFrame(RAR rarObject, boolean toClone)

/it toClone=true then clone RAR dseview RAR
ServiceAllocationFrame(Date startTime, Date sopTime, String tdrs, String S¢)

llcreste RAR from sdected DAS Availability Pand line
ServiceAllocationFrame()

llcreate RAR bv sHectina ment item from Main Pand

The RAR Pand will be usad in viewing previoudy scheduled RARS “doning” previoudy scheduled
RARs, or, generating new RARs. Viewing a previoudy scheduled request involves sdecting a request
from the Schedule Requests Panel and pressing the “View” button. Once this occurs, the Schedule
Request Panel invokes the RAR Pand passing dong as arguments the RAR object associated with the
selected request and aboolean flag set to “fasg” indicating that no cloning isto occur. The RAR isthen
displayed with al fields disabled so that no updates are made to the request. Cloning a previoudy
scheduled request involves sdecting a request from the Schedue Requests Pand and pressing the
“Clong’ button. Doing this invokes the RAR Pand passng dong as arguments the RAR object
associated with the selected request and a boolean flag set to “true’ indicating that the intent is to
“dong’ an exiting RAR object. The RAR Pand is displayed with the “Request ID” and
“ReferencedRequest ID” fiedlds cleared and a new RAR may then be created using the exising RAR's
vaues as defaults. Generating a completely new request involves ether sdecting the “Creste RAR”
menu item from the Main Control Pandl.

The Request ID vdue fied is supplied with an initid vaue of “0000000" when generating a new RAR,;
the Request ID is assigned later by the Isolator. The ReferencedRequest ID vaue fied appears
dissbled with a value of “None’ gnce this field is not used in an RAR. The user may modify other
exiging field vaues or enter new ones. However, to enable the SSC fidd for entry, the user mugt firgt
sdlect a SIC vdue. The latest DAS SSC parameter vaues will be retrieved from the database each time
the user sdlectsanew SSC. The user may modify any of the parameters for an SSC before submitting
the request by pressing the “Modify” button, which becomes enabled after an SSC is selected. Pressng
the “Modify” button invokes a ServiceParmWindow smilar to Figure 3-7. Pressing the * Submit” button
will cause the client application to check that the SIC, SSC, start and stop times are set before
forwarding the request for scheduling.

315 453-SDS-SWSI

E;,E DAS Resource Allocation Bequest I =]

|ReferencedRequest 1D (o0 RequestiD 0000000

Sewice StartTime. fzood 053 o Boon & =]
Senice Stop Time zon1 fos3 iz 29 o0 _af v|

=il I|:|338 "I TOES 1TDE ‘ri
550 |RE1 "I |"-'1|:ll.'jlf5.l' |

Figure 3-11 DAS Resource Allocation Request Panel

3.3.3.7 Resource Allocation Modification Request (RAMR) Panel

An RAMR dlows a DAS customer to modify a previoudy submitted resource dlocation request. The
congtructors used to invoke the RAMR Pane are shown in Figure 312. The design of the RAMR
Pand isshown in Figure 3-13.

ServiceAllocationFrame(RAR rarObject) /lcreate RAMR
ServiceAllocationFrame(RAMR ramrObject) /view RAMR

Figure 3-12 Resource Allocation Modification Request Panel Constructors

The RAMR Pand is nearly identica to the RAR pand except that it contains the ReferencedRequest ID
vaue of the RAR to be modified. The RAMR Pand’s Request 1D vaue field, too, is supplied with an
initid value of “0000000" when generating a new RAMR,; the Request ID is assigned later by the
Isolator. RAMRs inherit their SIC and TDRS field vaues from referenced requests and these fidlds are
not modifiable on the RAMR Pand. RAMRS a0 inherit ther sart/stop times and SSCs from
referenced requests but these field values are modifiable. To generate an RAMR a user would select
the reference request from the Schedule Requests panel and press the “ Generate Replace” button. An

316 453-SDS-SWSI

RAMR panel would gppear and the user would be allowed to modify the selected request’ sinformation
except SIC, TDRS, and ReferencedRequest ID. The user may modify SSC parameter values for the
referenced SIC before submitting the request by pressing the “Modify” button. Upon completion of
modifying the data the user would press the “ Submit” button, packaging the data into an RAMR object
(see Figure A-12 DAS Requests Common Class Diagram) and transmitting the object to the Isolator
viathe sendObject method.

E;,E DAS Resource Allocation Modification Request
:

iRefarencedRequesilD A7E5432 RequestiD 0000000

Service Btart Time 2007 [054 [09 oo o1 [a] =]
Senice Stop Time [zo01 054 fiz oo oo, & =]

Subrnit Cancel

Figure 3-13 DAS Resource Allocation Modification Request Panel

3.3.3.8 DAS Playback Modification Request Panel

If a DAS Playback Request is selected on a summary pand (see Sections 3.3.4 and 3.3.5) and the
Generate Replace Button is pressed, the pand shown in Figure 3-14 would gppear. Thiswill dlow the
user to change the requested time for the playback to start, the destination of the playback, or the
transmission protocol of the playback.

317 453-SDS-SWSI

DAS Playback M odification Request

SIC

Event ID

Old Start Time

New Start Time

Destination IP Address

Destination Port Number

O TCP
Desired Transmission Protocol © UDP
Submit Cancel

Figure 3-14 DAS Playback Modification Request

3.3.4 View Schedule Requests Panel

From SWSl Main-Pand's menu bar user can select and open Schedule Request panel. In this panel, as
shown in Figure 3-15, user can refresh data in the table by clicking Reload button. To view or delete
any schedule request, user can first sdect any row in the table and then click View or Delete button,
respectively. There are severd types of requests displayed on the pand. Some examples are Schedule
Add Reguest (SAR), Replace Request (RR), Alternate SAR (ASAR), and Wait List Request (WLR).
The generation of these requests can be initiated from this panel by any of those four generation button.
Findly, there is a Close button to alow user to close this pand.

318 453-SDS-SWSI

E!:"I.‘hl.'l.';.lﬂﬂ Fagquasts

ShitTime. | atpDEM | ToAS Meg dliss Requastil dshes | RetRegin radtion Tima |
20000 (12 050000 |58E01 ME | Delete Reg 4000170 Completed 9000158 {20001 03 0149 28| =
2000102 050000 |AES01 MS 048 |5AR 3000158 Celetad | 20000102 01.43.27
200002 080000 |A0501 ME 4B 2ue Q000472 Complaiad | 20000102 0155227

2000H 02 DE00:07 |ABED1ME |
2000102 0500:01 |9s01ME |\T4E geR anom7a Espirzd |
2000105 00 Gl]'liln!ﬁlll?.'iul.'-E- TOS SRR SO00E1 2 mCiivaied | 2000009E 1742737
20004 05 001007 |J-1MEL"F s SeR 213130 Acivaiad | 2000098 5:45:49
|
|

20004102 015308

2000408 A005:00 !AﬂS?EL’EE TOS aoR anonea IiZI.:cIir:."d 20000092 17:51: 31

2000105001 5.01 |#14460F oS SER e ol |mctivated Z000V0495 15.45.51 £=

1] ¥

“. e !I Cialals I Denerate 3AR | Genarale Raplate I Ganorats Aksmals | Generabe Peak List |
Closa I

Figure 3-15 Schedule Requests Panel

DAS Requests will be identified by unique Message Class identifiers to alow someone viewing these
summary panels to distinguish between NCC and DAS requests. Additiondly, someone viewing these
panels could sort the requests by pressing the Message Class column header on that panel. Thiswould
group the requests by Message Class and alow the user to more easily identify DAS specific requests.
DAS specific message clases are as follows:

DASRAR — DAS Resource Allocation Request

DASRADR — DAS Resource Allocation Deletion Request
DASRAMR — DAS Resource Allocation Modification Request
DASPBKR — DAS Playback Request

DASPBKDR — DAS Payback Deetion Request

DASPBKMR — DAS Playback Modification Request

To congtruct the Schedule Request Pand, ViewScheduleRequestFrame class is to define dl required
graphical user interface (GUI) components, data, and methods. As shown in Figure 316, column
names and data of atable are declared and used to diplay dl schedule requests. All GUI components
are instances of Java and Swing beans, i.e., JPand, JScrollPane, JButton, and JTable. A table model
class, ViewScheduleRequestTableModd, is extended from a JAVA Swing default table modd to
construct the table object to be used in the frame class.

319 453-SDS-SWSI

ViewScheduleReguestFrame

- tolumniames : Strnog [
- data : Object[][]

- contentPane [JPanel

- jScrollPanel ;. JScrollPane
- reload : JButton

-wieny o JBUtton

- delete :JButton

- close :JButton

-table ; JTable

- status String

- active ; String

+|oadSchReq { Qhject [] [] data) : String status
+reloadSchReqd { Ohject[1[] data) : String status
FdispSchReqview (msgClass) String status

+ deleteRow { intindex)

+ deleteSchReq (requestiDi) ;

+ closeFrame()

1 1
PackageName: Commons
1
ViewScheduleRequestTableModel Schedule_Request_List
Loy
-data : Object[][] 1
- ColumnMames : Object[]]
+getRowCount { 3 :int 0.+
+ deleteRow {int index) :
5cheduIeRequest
LT

Figure 3-16 Class Diagrams for Schedule Requests

Each button click or a table selection invokes a correspondent action listener and a Java event handler
to perform the required action. Function loadSchReq is a method to load datainto the two-dimensond
data aray. To load data into the table, a request for Schedule Request List defined in the package,
commons, is sent to Application Server. The Client's DataManager class will establish data storage,
request data, and notify listener for data updated and/or data ready for access. All schedule request
data ae defined by class ScheduleRequest. Function digpSchReqgView is cdled by function
rdoadSchReg. Function deleteSchReq is invoked after clicking the Delete button. Function
closeFrame will cdose the frame after finishing schedule request activities. Note that user can only
reopen this pand from the Main pandl.

320 453-SDS-SWSI

3.3.5 View Active Schedule Panel

From SWSl Main-Pand's menu bar user can sdlect and open Active Schedule panel. In this pand, as
shown in Fgure 3-17, user can refresh data in the table by clicking Reload button. To display service
of any active schedule event, delete or replace any active schedule event, user can first select any row in
the table and then click Display Service, Delete or Generate Replace button, respectively. Findly, there
isa Close button to alow user to close this pandl.

Faioan

Fund OIR| SUEIHEN| Bvunt 0| EitTime | SipTime | #arSemaces| TORE Prothni Blertin] B Band B Coda’ | iHanid Fil Goda ST |
|B1. 25405 | BODOZSE | ZODODFT DOOD:0D |FOO0OTT 10,0000 1 [TDE a0 I |0z -
[wocT2HE | S0008:28 | 200077 D1 0000 | B000N0TT 0600 00 [|TRE |40F LE] H

i) JancT2mE (8000258 | 2000077 D3-10:00 | FO0N0T 7 050000 [|TDE |A13 145 L] =L I
|amzT2WE (RON02T0 | 2000MF7 044500 | F0n0T T 0SS 00 |3 |TDE A0S 17 L

R |51 234mE 000858 | 2000077 050000) F00ACT ¥ 060000 11 TOE BN na in FLEH EM

o [ACETZHE | ROD0S4D] 2000077 05:30:00 |F00M07 7 07 30001 5 B0 11 12
[ACGTZWE | BOD0BA3 | 2000077 0F-30:00 |FO0007 7 08:3000 |1 275 |Cio 13 4

o |A03T2ME |B00004E | 3000077 0:30-00 | 00T 1035001 75 |Cos an] aiM -

i Dinplay Bervice: Dielete enetils Replaos | Chorem |

Figure 3-17 Active Schedule Panel

DAS events will be given aUSM Type of ‘DAS RAR’ or ‘DAS PBK’. Like the Schedule Requests
panel, someone viewing these pandls could sort the events by pressing the USM Type column header
on that pand. This would group the events by USM Type and dlow the user to more eadily identify
DAS specific events. The blank USM Types are actudly NCC fixed types and will be shown as
‘FHIXED’ in the find implementation. Likewise, the ‘SIM’ types will be shown as ‘FIXED SIM’ in the
find implementation.

Additiondly, the logic for the summary pands would have to be modified to support the following
functiondlity:

View Button (on Schedule Request Panel): The Schedule Request panel would have to be modified

to cal the correct class (DAS Request or SchAddRegFrame) depending on whether a DAS request or
an NCC request was sdlected for viewing.

Generate Replace Button: Smilarly for the Generate Replace button, if a DAS RAR request is
sected, the DAS Resource Allocation Modification Request pandl would be called. The pand would
be shown with atitle of ‘DAS Resource Modification Request” and would include the origind request’s
ID.

To congruct the Active Schedules Pand, ActiveSchedulesFrame class is used to define dl required
graphical user interface (GUI) components, data, and methods. As shown in Figure 318, column
names and data of a table are declared and used o display dl the events in the active schedule. Al
GUI components are instances of Java and Swing beans, i.e., JPandl, JScrollPane, JButton, and JTable.

321 453-SDS-SWSI

A table modd class, ActiveScheduleTableModd, is extended from a JAVA Swing default table mode
to congtruct the table object to be used in the frame class.

Each button click or a table selection invokes a correspondent action listener and a Java event handler
to perform the required action. The loadUSM function is a method to load data into the two-
dimensond data array. To load data into the table, a request for USM_List defined in the package,
Commons, is sent to the Application Server. The Client’s DataManager class will establish data storage,
request data, and notify listener for data updated and/or data ready for access. All active schedule
event data are defined by class USM. Function displayService is cdled to open Service Display pand.
Function deleteUSM s invoked after clicking the Delete button. Function generateReplace is called to
open Create Replace Request pand. Function closeFrame is to close the frame after viewing active
events. Note that user can only reopen this panel from the Main pand.

ActiveSchedulesFrame

- columnilames ; String []
-data : Ohject[][]

- contentPane © JPanel

- jScrollPanel : JScrollPane
- reload ;. JButton

- displayService : JButton
- delete :JButton

- close JButton

- fahle : JTable

- status : String

- active : String

+ [oadlUSM { Object[] [] data,String active) ; String status
+ reloadUSh { Ohject[] [],5tring active) : String status
+displaySemice { String eventiD)

+delete {intindex) :

+ deletel S (String eventlD, String active) : String status
+ generateReplace ({ String eventlD)

1 1

PackageName: Commons
9 USM _List
Ut a—
ActiveScheduleTabhleModel 1
- data : COhject[][] 1
- columniames : Ohbject[]
0.16

+ getRowCount () UsmM
+ deleteRow { int index) I L LT E—

Figure 3-18 Class Diagrams of Active Schedule

322 453-SDS-SWSI

3.3.5.1 View Service Display Panel

From Active Schedule Pand user can click Display Service button and open Service Display pandl. In
this pand, as shown in Figure 3-19, user can first select any row in the table and then click Parameters

button. Thereis a Close button to alow user to close this pand.

EEi Service Display =1 B3
Supiden AD372MS EventiD [a000270
Stari Time [2000/077 04:45:00 TORS [0S
StopTime [3000/077 05:45:00 Prototype 1D [a05

S-Band F Code iEIT
K-Band PM Code [08

Serice Type | &8¢ | Start Time | Stop Time | Link 1D

SSAF Mormal [HOZ |2000/077 04:45:00 [2000/077 05:45:00 [2 «|

SSAR Marmal [HDZ |2000/077 04:45:30 (20000077 05:45:00

Tracking Mormal |HO2 |20000077 04:45:31 | 2000077 05:45:00 i

Pararnetars,., . Generate GCMR | Cloge I

Figure 3-19 Service Display Panel

A new button called *View Handovers will be added to the Service Display panel. This button would
only be enabled when a DAS event is sdected and the TDRS is marked as ‘Any’. This button will
bring up a subpand displaying the planned TDRS handovers for that DAS service. This pand is a

viewing only pand and is shown in Figure 3-19a.

323

453-SDS-SWSI

DAS TDRS Handovers

SIC:

Service Start Time:

Service Stop Time:

Start Time Stop Time TDRS

Figure 3-19a DAS TDRS Handovers Panel

To congruct the Service Display Pandl, ServiceDisplayFrame class is to define al required graphica
user interface (GUI) components, data, and methods. As shown in Figure 3-20, column names and
data of atable are declared and used to display dl the services. All GUI components are ingtances of
Java and Swing beans, i.e, JPand, JScrollPane, JButton, and JTable. A table modd class,
ServiceDataTableModd, is extended from a JAVA Swing default table modd to congtruct the table
object to be used in the frame class.

Each button click or a table selection invokes a correspondent action listener and a Java event handler
to perform the required action. The loadUSM_Service function is a method to load data into the two-
dimensond data array. To load data into the table, a request for USM_SSC Ligt defined in the
package, Commons, is sent to Application Server. The Client’s DataManager class will establish data
storage, request data, and notify listener for data updated and/or data ready for access. All service data
are defined by class ServiceRequest. Function ParametersDigp is called to open Parameters panel
corresponding to the Service Type. Function closeFrame is to close the frame after viewing parameters
activities. Note that user can only reopen this panel from the Active Schedules panel.

324 453-SDS-SWSI

ServiceDisplayFrame

- columniames ; String]
- data : Ohject[][]

- contentPane JPanel

- jBerollPanel ; JScrollPane
-table : JTahle

- parameters - JButtan

- close : JButtan

+ logdUSmM_Service (data) ;

+ parametersDisp (serviceType)
+ getSeniceType ()
+closeFrame()

1 1 _|
PackaneName: Commons
USM SSC List
Pt

1 1
ServiceDataTableModel - 115
- data : Object[1[]
- columniames ; Ohject[] EEWIFHEFREHEH? uest

+ getvaluest Cint rove int col
+ getRowCount ¢) ;

Figure 3-20 Class Diagrams of Service Display

3.3.6 Alert Panel

The dert pand will display NCCDS and DAS derts and also aerts generated by SWSl subsystems.
Thiswill indude:

system status messages from the Application Server, Isolator, SNIF, or SDIF

Schedule Result Messages (SRMs) with the result and explanation codes trandated by the
SNIF

Acquistion Failure Notification messages
The status and digposition of Ground Control Message Request (GCMR)

The dert pand will pop up whenever the first dert is received after the user connects to the application
sarver. The user may dso bring up this pand manualy by sdecting it on the SWS main menu.

325 453-SDS-SWSI

This pand will be implemented by modifying the current Jswitch event message pand. This dert

messages pand, shown in Figure 3-21, will display derts by color based on severity. A column will be
added to show the source of the dert (Application Server, Isolator, SNIF, SDIF, or DAS). The pand

includes a buffered, scrollable table that supports user sdection of entries within the table. Thisalows
the user to select arange of aerts to print or delete. The pand dso provides optiond dert logging to a
flat file on the user’ s dlient computer.

E=3 Alert Messages
| File Edit Log

SEVERITY | SIC TIME TR G MESSAGE

WiErning 4iIIIIII-’ 20002710 5| MCCDS: Reguest rejected due to conflit. SA Confict.
Warning | 4007 | 20000271:09:33:15 | NMCCDES: Reques canceled by operator,

Wiarning | 4007 | 20002710 5| NCCDS: Request rejected due to conflit. SA Confict.

aooo
Wiarning | 4007 oo0: JiL 5| NCCDE: Reguest rejected due to conflit. S2 Confict.

PAUSE || LAST ALERT: 2000:271:20:00:01 STATUS: INFO {LOGGING: ON | NUMBER OF MESSAGES: 2151

Figure 3-21 Alert Panel

This Jwitch event message pand will be modified to disolay and log SWSl derts containing the
following information:

Severity (1 = information, 2 = warning, 3 = critical)

Serverity COLOR
1 Green
2 Yelow
3 Red

Source (Application Server, Isolator, SNIF, SDIF, or DAYS)
SIC (Spacecraft Identification Code)

TimeTag (YYYY:DDD:HH:MM:SS)

Text of Alert contains the actua aert message

The pand will dso be modified to change the pand title, remove the option to filter messages by
message number or severity level, and to disable the menu option to “Open Event History Viewer”.

326 453-SDS-SWSI

This latter option will be modified in some future release to support viewing of the dert history stored in
the SWSI database.

Since derts are routed by SICs and some identica aerts can be generated by multiple SICs and some
dients can monitor multiple SICs, some dients may get multiple derts.

3.3.7 GCMR Panel

3.3.7.1 GCMR Menu Panel for NCC Services

The Ground Control Message Request pand provides a means to submit ground control message
requests (GCMRY).

The GCMR Menu Panel can be triggered by one of two methods:
1. Clicking on the GCMR button on the UPD Summary pand

2. Clicking on the GCMR button on the Service Display pand (a subpand off the active schedule
panel)

The GCMR Menu pand for NCC events will contain the following information: TDRS, SUPIDEN,
Service Type, Link Number, and GCMR TYPE. Everything but the GCMR type will be pre-filled on
the GCMR Menu pand.

Allowable GCMRs types will be hardcoded in the Client software. Vaid values are asfollows:

Servi ce Reconfiguration

User Reacqui sition Request

Forward Link Sweep Request

Forward Link EIRP Reconfiguration - Nornmal Power

Forward Link ElIRP Reconfiguration - Hi gh Power

Expanded User Frequency Uncertainty Request

Doppl er Conpensation |Inhibit Request - none SSA
The pull down of GCMR types will include dl dlowable GCMR types for dl services. It should be
noted that some GCMR types are not vaid for adl Service Types. Invdid will be flagged by the
NCCDS. Therefore, if the user seects an invdid GCMR Service Type/ GCMR type combination, an
dert generated by the NCC will be displayed on the Alert pand.

Clicking on the submit button at the bottom of the GCMR Menu pand for al GCMR types except
servicereconfiguration will send the following common objects to the Application Server.

327 453-SDS-SWSI

GCMR Type

Common Object Sent

User Reacquisition Request

User Reaction_Request

Forward Link Sweep Request

Forward Link Sweep Request

Forward Link EIRP Reconfiguration— Normal Power

Forward_Link_EIRP_Reconfiguration
(power mode set to Normal)

Forward Link EIRP Reconfiguration - High Power

Forward_Link_EIRP_Reconfiguration
(power mode set to High)

Expanded User Frequency Uncertainty Request

Expanded_User Frequency Uncertainty Request

Doppler Compensation Inhibit Request — none SSA

Doppler_Compensation_Inhibit_ Request
(compensationl nhibitCode = hone SSA

Table 3-3. GCMR Typeto Common Object Map

Clicking on the submit button at the bottom of the GCMR Menu pand after selecting the service
reconfiguration vaue for GCMR Type will display a Service Reconfiguration pand. Service
Reconfiguration GCMRs are discussed in detail in the next section.

3.3.7.2 GCMR Menu Panel for DAS Services

DAS GCMRs would use a DAS unique GCM menu pand (different from NCC requests). For DAS
GCMRs, the EventiD would be s, and the GCM types would be redricted to ‘Service
Reconfiguration’ and ‘User Reacquigition Request’. The DAS GCM Menu pand is shown in Figure 3-

Sdecting a * Service Reconfiguration’ will cause a ServiceParmWindow to be generated dlowing the
user to update the SSCsfor that service.

DAS GCM Mewu

EventD | 0900928

GCM Type

Service Reconfiguration

Submit

Cancel

Figure 3-22 DAS GCM Menu Panel

328

453-SDS-SWSI

3.3.7.3 Service Reconfiguration Panel

If Service Reconfiguration is chosen as the GCMR type on the GCMR Menu, the ServiceParmWindow
class described in Section 3310 will send a GCParms (EIF or norm) (TDRS
ID)_(supiden) (ServiceType) (LinkNumber) request to the DataManager (discussed in the common
object areq) to register with the DataManager class. The DataManager class will return a GCMR
“placeholder” object. The ServiceParmWindow will sstup a ligener method on the GCMR
“placeholder” object and wait for GCMR data containing the current ground control service parameter
vadues for an event and service defined by the TDRS ID, supiden, and service type. The
ServiceParmWindow class will take the layout specifications (datic information such as labels and their
locations <row and column>) and dynamicadly create the Reconfiguration panel. Refer to Section
3.3.10 for further details.

All reconfiguration pands will be divided into the following three sub-panels. the header sub-pand, the
fixed parameter sub-pane, and the reconfigurable sub- pand.

The following fixed parameters will be displayed at the top of the reconfiguration panel in the header
ub-pand:

SUPI DEN

Service Type

TDRS

Service Start Tinme

Service Stop Tine
The fixed parameter sub-pand will be digplayed in the upper portion of the reconfiguration pand just
below the header sub-pand. The reconfigurable subpane will be displayed on the lower portion of the
reconfiguration pand under the fixed parameter sub-pand. This pand will contain reconfigurable or
modifiable parameters. Upon digplay of the reconfiguration panel, the fixed parameters, as well as the
reconfigurable parameters, will be pre-filled with current service values

The data on the header and fixed parameter panes will be displayed but “grayed out” (i.e., input will be
disabled). Data on the reconfigurable parameters sub-pand can be modified in two ways.

Reconfigurable parameters with a limited set of vaid vaues: modify the current value by sdecting a
new vaue from the associated pull-down menu. To clear out a parameter, the user should delete
the current value by using the ddete key. All blank parameter values will be interpreted as no
change to this parameter vaue.

Reconfigurable parameters with numerous vaues. modify the current vaue by typing the new vaue
into the corresponding text field; the new vaueistyped into an input fied.

Clicking on the submit button a the bottom of Reconfiguraion pand triggers the Service
Reconfiguration class to load the Service Reconfiguration Regquest common object with the modified
parameter values to be sent to the Application Server.

All GCMR Alert messages will be displayed on the Alert pand; no Alert information will be displayed
on the GCMR pandls.

329 453-SDS-SWSI

3.3.8 UPD

When the user sdects the UPD option from the Main Control Pand “pands’ pull down menu, a
UPD_(EIF or norm)_(SIC) common object is sent from a UPD driver class to the DataManager class
(discussed in the common object area) to register with the DataManager class. The DataManager class
will return a UPD “placeholder” object. The UPD driver will setup a listener method on the UPD
“placeholder” object and wait for UPD data. A UPD Summary Pand that contains an empty Summary
Active Sarvices Table will be generated; the Active Sarvices table will hold the UPD Summary
information to be displayed on the Summary Pand. The Active Services table will be loaded as the
DataManager beginsto receive UPD data. The UPD Summary Pandl section provides further details.

3.3.8.1 UPD Summary Panel

The UPD Summary pand contains a dynamicdly szed Summary Active Services table; the table will
grow and shrink as services become active and inactive. The Summary Active Services table will be
loaded with summary data for dl active services per TDRS and SUPIDEN or SIC; asarvice is active if
the DataManager is receiving UPD data. Each row in the Summary Active Services table will include
the following service information: TDRS, SUPIDEN, UPD type, antenna or link number or DAS event
id, and service gatus. A separate column of Ground Control Message Request (GCMR) buttons will
alow the user to generate a GCMR for an active service. Below isalist of UPD types that can appear
on the Summary Pand:

SSAF
KSAF

KaSAF

SSAR DGL
SSAR D&
SSAR DQM
SMAR DGL
SMAR DG2
SMAR DQM
KSAR DGL
KSAR DG2
KSAR DQM
KaSAR D&
KaSAR DQM
MAF

SMVAF

MAR

MAR DQM

Si nF

Si nR
KaSARVWB DG2
KaSARW DQM
DASMAR

330 453-SDS-SWSI

The GCMR and sarvice status columns in the UPD Summary Active Services table will be displayed as
a buttons. Clicking on a GCMR button triggers the GCMR subsystem. (Refer to Section 3.3.7 for
detals.)

The service dtatus button will be labeled with the maximum severity of UPD detail data as determined
by limit checks performed on the data from the UPD detail pandl (ex. good, warning, out of tolerance or
UPD ended). The color of the service status button will correspond to the labe of the service Satus
button as described in Table 3-4 below.

Color of

Service Bar L abel Meaning

Green “Good” Serviceisactive. No limit-checked parameter failed.

Yelow “Warning” Serviceisactive. At least onelimit-checked parameter is at the
warning level. No limit-checked parameters are worse than the
warning level.

Red “Out of Serviceisactive. At least onelimit checked parameter isout of

Tolerance” tolerance.

Gray “UPD’s Service may not be active. Timeout expired without updates for this

ended” service.

Table 3-4. Service Status Button Coloring

Clicking on a sarvice datus button in the UPD Summary pand makes the detal pand for a
TDRSSUPIDEN or SIC/UPD type visble. If the detall pand is dready vishble, it is brought to the
foreground.

DAS Services would be shown aong with the NCC services in the UPD summary pand. The TDRS
ID shown for a DAS service would be the current TDRS ID for that service, the SUPIDEN would be
replaced by the SIC, and the link number replaced by the EventID. This UPD summary pand is shown
in Fgure 3-23.

User Performance Data Summary Panel

SUPIDEN Link or Submit

Time or SIC STATUS Service TDRS EventID GCMR
yyyydddhhmmss B1295MS | Good | MAF 170 1
yyyydddhhmmss B1295MS |[OUIGIIGIEIEReE) SSAF 170 1 [
yyyydddhhmmss 1295 | Good | DAS 046 9000928 []

Figure 3-23 UPD Summary Panel

331 453-SDS-SWSI

3.3.8.2 UPD Detail Panels

UPD detall panels digplayed will either be sandard UPD detail pands or customized UPD detail panels.
Standard UPD detal panes will mimic the Operations Data Message (ODM) displays of the
Communication and Control Segment (CCS) of the Network Control Center Data System (NCCDS).
A generic trandator program will take the specifications (dtatic information such as labels and their
location <row and column> found in the SetupObject and dynamicaly create a UPD detail pand; the
SetupObject updDescList will be searched to locate the matching service and retrieve the UPD layout
information A sample UPD Detall Pand is shown in Figure 3-24.

[EiDAS_MAR: UPD [_[O]
| File Edit Execution
TDRS TDE Service Start Time 20011031 120833
SIC 21232 UPD Time: 20011031 121031
|
Static Data

Acquisition Mode; Mode 1

Carrier Uncertainty: 700 Hz

Carrier Offset: 33 Hz

| Channel Q Channel
Data rate T8 bps T8 bps
G2 Symhbol Inversion [verted [verted
Syimbol Format MNRZ MNRZ
Data Format MRZ-L MRZ-L
PH Code 25 30
Modulation BFSK BFSK
Data Bit Jitter Mone 0.01%
[hymamic Data

Chip Rate Estimate 140 bps

Carrier Frequency Estimate 3300 Hz

Eb/MO Estimate >=10-3

Acquisition Frequency 3100 Hz

I Channel Q Channel

Syimhbol Rate Estimate a8 hps a8 hps
Acquisition Time 2001031 120833 2001031 120833
Lock Status Ho Lock
Loss of Lock Time L 20010031 121031

332 453-SDS-SWSI

Figure 3-24 UPD Detail Panel

Customized panels are sandard panels that have been modified by the user and saved; customized
pands are sored localy. Each service will have a UPD detail pand specified as default. The default
UPD detail pand will be the panel displayed upon detail UPD pand selection. The user has the option
to change the default detail UPD pand (Details are discussed below).

The UPD detall pandswill have the following functiondity:
1. Displaysdataonly (ie, no user input/update)

2. Contains JavaBeans to provide reconfigurable components, limit checks of data and to set data
background colors accordingly. The Range and Numeric beans will need options to set display
color based on item values (refer to #5).

Bean Type Description

JBeanRange Display used to display an enumerated parameter type value
JBeanNumeric Display used for a numeric parameter type

JBeanText Display used for atext parameter type

Table 3-5. JavaBeans Needed for UPD Displays

3. Allows users to modify window layout. Assumes modified windows are only a subset of standard
windows, not (for example) unions. (ex. delete mnemonics, delete components or labels, move
mnemonics, move components or labels, properties, etc.) Clicking on the right mouse button will
disolay amenu of user reconfiguration options. These modified pands detail will be stored locdly in
afile Thereisno limit on the number of user reconfigured UPD detail pands.

4. Allows user specification of default UPD detall layouts, one layout per UPD type. The standard
UPD detall pand will be the initid default UPD detall pand. Standard UPD detall pands are
dynamicaly created using the UPD layout information in the SetupObject. Customized UPD detall
panels, modified standard pands that have been stored localy, may dso be set as the defaullt
pand. From aUPD detall pand menu, clicking on the set default option from the UPD detail menu
bar will display a list of standard and user defined panels for the particular UPD type. Clicking on
the name of a pand will set the chosen pand as the default UPD detail pand. The user can select
(click on) ether the sandard pand which will be dynamically generated from the specifications given
in the SetupObject or a localy stored user specified layout as the default UPD detall pand. If a
user defined UPD detail pand is chosen as default, the UPD Type and window name will be
written to a locd file; no entry will be written to the file if the sandard UPD detall pand is the
default. When the user accesses the UPD subsystem, the default file will be read to determine
which UPD detail pand is to be displayed. If a record is found in the default pand file, the pane
specified will be disdlayed; if no entry is found in the default file for the specified UPD Type
combination then the standard pand is dynamicaly crested and displayed. Changing the default
UPD detail pand will cause a readjusment of the UPD Summary panel service status button label
and color, to reflect the maximum severity limit on the chosen UPD detall pandl.

333 453-SDS-SWSI

5. Enumerated vaues passed from the database will be trandated into severity levels. Once the
severity level has been established, the color associated with the severity level will be retrieved by
performing a lookup in a table of severity levels mapped to colors. 1cons may aso be displayed
adjacent to the data value to represent the severity level of the data item; the icon will aid operators
who are color blind. The max severity levd, of dl dataitems, and its color will be displayed on the
Summary Display service buttons (refer to Table 34 for detalls). The individud data severity
levelswill be shown by coloring the data field on the UPD detall pand as specified in Table 3-6.

Data Color Meaning

Black All Labds

Blue Non Limit checked dataitem

Green Limit-checked, dataisin good range

Yellow Limit-checked, dataisin marginal range

Red Limit-checked, datais out of tolerance or invalid

Table 3-6. Data Item Coloring
6. Digplays UPD detall informetion in either 1 pand or 1 panel with 2 subwindows.

3.3.8.3 UPD Processing

As data is received, the UPD driver will determine the UPD type/SIC of the UPD data. A lookup in
the Summary Active Services table will be performed to find a matching SIC/UPD type.

If amaich of the SIC/UPD typeisfound in the Summary Active Services table the following will occur:

An update method for the UPD type will be called; the update method will load the new UPD data
vaues onto the exigting UPD detal pand.

A method will be cdled to update the max severity of the service status button on the Summary
Pand.

The UPD detall information will be parcded out to the gppropriagte JavaBeans within the
corresponding UPD detail pand

If the UPD typeis not found in the SIC Active Sarvices table the following will occur:

A look up in the default file by UPD type will be performed to determine which detall pand to
create/open (a standard panel or a customized panel)

» If the default pand is set to the standard UPD detail pand for thet service, the UPD detail pane
will be dynamicaly created. A look-up of the corresponding service in the setup object
updDescList will be performed to obtain the layout of the pand. The UPD detall pand will be
made invisble upon cregtion (the user will be able to display these pands by clicking on the
sarvice gatus button as described below). The reason behind creating the UPD Detail panels at

FHA 453-SDS-SWSI

this point is to enable the max severity limit of the detalled data to be shown on the UPD
Summary Pand. The detall datais then parceled out to the gppropriate JavaBeans to fill in the
UPD detall panel data values. Data vaue backgrounds will be set to an appropriate color.
(Refer to Table 3-6 for details.)

> |If the default pand is set to a customized pane, the pand is opened and the detall data is
parceled out to the appropriate JavaBeans to update the data values in the UPD detall pandl.

> Datavalue backgrounds will be set to an appropriate color. (Refer to Table 3-6 for details)
The new sarvice summary informetion is added to the UPD Summary Pandl.

The sarvice status button on the Summary Panel will be set to reflect the max severity of the UPD
detall data

Timeouts of two types will be set on each UPD entry, row, in the Summary table. Thefirs set of timers
will be started when the UPD Summary pand is displayed. When UPD data is recelved by the
DataManager class, the DataManager classwill set the vauein the UPD *placeholder” object, the UPD
driver’s listener method will get cdled and the UPD driver will call amethod in the gppropriate pane to
st the data. If no UPD updates have been recaived for a particular service within the specified time,
the time value will be a configurable vaue thet is stored and set in a property file, the timer will expire.
Upon expiration of the timer, the labd of the service button on the UPD Summary pane will be changed
to “UPDs ended” and the service status button color will change to gray. At this time a second timer
will be kicked off for that service. If, again, no UPD datais received within the specified time, the time
vaue will be a configurable value that is stored and set in a property file, the second timer expires and
the corresponding row in the UPD Summary pandl table will be removed from the table. Also, dl open
corresponding UPD detail panels will be closed. If updated UPD data is received prior to the second
timer expiration, the labd of the service status button on the UPD Summary panel will be changed to
reflect the maximum severity of dl limit checks from the individua UPD display. The service datus
button will aso be changed to the appropriate color as defined in Table 3-6.

3.3.9 TSW & State Vectors

TDRS Scheduling Window (TSW) messages notify the NCCDS of when the user spacecraft iswithin
the line-of-gght of a TDRS. These line-of-sight periods may be further reduced by spacecraft attitude
and antennae pointing limits, solar interference conditions, multipath interference conditions, or radio
frequency interference (RFI) conditions such as the South Atlantic Anomay (SAA). These predictions
may be misson dependent and may require spacecraft ephemeris, solar ephemeris, attitude solutions,
and spacecraft specific antennae limitations. SWSl will not have any prediction capabilities. Instead, it
will have the ahility to take prediction output in the format specified in Table 7-12 of the NCCDS/MOC
ICD and form TSW messages that will be sent to the NCCDS through SWSI. The TSW panel may
amply be afile chooser dlowing the user to sdect which file of TDRS scheduling windows to be sent to
NCCDS. A separate didog box will be displayed asking the user to select a SIC for the TSWs being
sent. TSWsare not sent to DAS.

335 453-SDS-SWSI

The State Vector panelswill support:

1 conversons from Latitude/L ongitude/Altitude to type 8 IIRV's
2 IRV direct entry

3 import of afile of vectors

The State Vector pandls will dso ask the user to sdect a SIC for the state vectors. SVswill be sent to
both the NCC and DAS if the user was flagged as an NCC and DAS user, or to either NCC or DASif
the user was flagged as auser for only one of these.

If the user sdlects “ Generate Vectors’ from the Main Control Pandl, the panel shown in Figure 3-25 will
aopear. The user would enter dtate vectors manudly in this pand. [If the user selects “Import” under
“State Vector” from the Main Control Panel, a file chooser pand appears from which the user can
specify which file to send.

336 453-SDS-SWSI

State Vector Generation
Geodetic Reference System WGS-84
Re =6378.137 (Km), IFC = 298.2572

Epoch Time:
SIC v
Data Source Real-time v

Nominal
Message Class

Inflight Update

Convert from Latitude/Longitude/Altitude

Input Type
put Typ Direct IRV Entry

@O @O

Altitude: (Km)

Latitude: [-90,90]

Longitude: [0,360]

X Position: (Km) X Velocity: (Km/s)

Y Position: (Km) Y Velocity: (Km/s)

Z Position: (Km) Z Velocity: (Km/s)
Submit Cancel

Figure 3-25 State Vector Input Panel

3.3.10 ServiceParmWindow

Subwindows for reconfigurable parameters (for GCMRS) and respecifiables or schedulable parameters
(for Schedule Requests) will use a common window class. This dassis the ServiceParmWindow.

This window will have a “header” portion and a split pane. The header portion will consst of the
supiden, SSC, and service type for respecifiable windows, and the TDRS ID, supiden, service type,

337 453-SDS-SWSI

and start and stop times (if available) for reconfigurable windows. The top pane of the split pane will
contain fixed parameters. Fixed parameters will ke displayed but “grayed out” (i.e, input will be
disabled). The bottom pane will contain respecifiable or reconfigurable parameters, as needed. Both
panes will be scrollable and will lay out parameters verticaly. Figure 3-7 shows an early prototype of a
window with the respecifiable pane done. The find pane will differ in that a column of current values
will be shown between the discriptions and the entry fidds.

A pane of reconfigurable parameterswill be smilar. All parameters on the ServiceParmWindow will be
displayed one per line, with a scrollbar if needed. For display dlowing input, each parameter will have
three columns digplayed; alabe column, current vaue/default value column, and a user input column.

Thetitle of the find ServiceParmWindow will be:
“<sarvice type> Schedulable Parameters’, for respecifiable parameters
“<sarvice type> Reconfigurable Parameters’, for reconfigurable parameters
where an example of <servicetype> is“KaSAR”.

A window containing respecifiable parameters will have “Save’ and “Clear” buttons. Hitting the “ Save’
button will cause the ServiceParmWindow to pass a Properties object back to the origind cdler. This
Properties object will contain the set of keyword/vaue pairs defining the user selections and settings.
“Clear” will reset dl the user’ s entries.

A window containing reconfigurable parameters will have “ Submit” and “ Cancd” buttons. * Submit” will
cause a Service Reconfiguration_ Request common object to be created and sent to the Application
Server viathe DataManager. “Cance” will cause the window to close without a common object being
sent.

This class will support the creation of a standard display layout using the service description information
provided by the login setup. An import function will take information from the login setup that defines
the content and create windows.

This class will provide a new Service window. Depending on which constructor is used to creete the
window, it may have a submit button that uses data from GUI components within it to set and send an
output object. Degtination of output object will aso depend on which constructor was used.

The following class diagrams show the interfaces and class definitions. A description follows each:

ParameterizedRequest
<<interface>>
+void setParameters(short index, Properties parms)

Figure 3-26 Class Diagram of ParameterizedRequest Interface

338 453-SDS-SWSI

The ParameterizedRequest interface defines the method needed by the ServiceParmWindow class
perform a calback to set the respecifiable parameter vaues. This dlows the ServiceParmWindow
object to return an object of the Properties class back to the caller. This Properties object will contain
the keyword/vaue pairs defining the parameter settings made by the user. The ParameterizedRequest
interface will be implemented by three types of panels. SAR, RR, ASAR, RAR, and RAMR.

ServiceParmWindow
<<implements serializable, ActionListener, WindowListener, MouseL istener>>
-short schedFlag; /I O=respecifiable input; 1=respecifiable display; 2=reconfigurable
-String myService;
-String mySSC;
-String myTdrsID;
-String mySupiden;
-Date myStart;
-Date myStop;
+ServiceParmWindow(ParameterizedRequest ref, // for respecifiable input
short index,
String service,
String supiden,
String SSC)
+ServiceParmWindow(String service, /I for respecifiable display
String supiden,
String SSC)
+ServiceParmWindow(String service, /I for reconfigurable input
String tdrsID,
String supiden.
Date start,
Date stop)

-static ServiceParmWindow importService(String service)

+void setParameters(Properties parms) /] to set existing parameter values

Figure 3-27 Class Diagram of ServiceParmWindow

The ServiceParmWindow class provides four possible congtructors:

1. Thefirgt congructor which takes an argument of ParameterizedRequest, among others, generates a
window of respecifiable parameters. This window will do a cdlback to the cdler's
(ParameterizedRequest object’s) setParameters method to provide any parameter values that were
st by the user when the user pressesthe “ Save” button.

2. The second constructor, which takes arguments of service type, SIC, and SSC, generates a read
only display of respecifiable parameters for the user to view. The cdling object needs to firgt call
this congructor, followed by a cal to the setParameters method of this class to pass the current
parameter values to the ServiceParmWindow for display. The “Save’ and “Clear” buttons will be
disabled.

339 453-SDS-SWSI

3. Thethird congtructor, which takes arguments of service type, TDRS ID, supiden, and start and stop
times, will generate a display of reconfigurable parameters. The calling object needsto fird cdl this
congtructor, followed by a cdl to the setParameters method of this class to set the current
reconfigurable parameter vaues. The resulting ServiceParmWindow object will create and send a
Service Reconfiguration Request object when the user presses the “ Submit” button.

4. The fourth congtructor, which takes an argument of Event 1D, is used to support the DAS GCMR.

Each of these condructors work in a smilar manner in that they will set the schedHag to indicate what
type of window is being crested. They will then get the default window layout. |If the default is a user
defined layout, this window will be deseridized. |If the default is the standard layout, the congtructor will
cdl the private, static method importService to obtain the service description parameters from the
DataManager and create the window.

The ServiceParmWindow will aso have the methods defined by the interfaces that it implements.
ServiceBean
<<interface>>
+void satText(String text)
+3iring getText()

Figure 3-28 Class Diagram of ServiceBean Interface

The ServiceBean interface defines the bean methods needed for the ServiceParmWindow to get and set
the text values of the GUI components withinit. The types of beans needed include:

Bean Type Description
JBeanRange Display | used to display an enumerated parameter type value
JBeanRadio Input st of radio buttons used for an enumerated parameter type

JBeanDropList | Input drop down list used for an enumerated parameter type
JBeanNumeric | Either used for anumeric parameter type
JBeanText Either used for atext parameter type

Table 3-7. JavaBeans Needed for ServiceParmwWindow

Some of these beans may aso be used for the UPD displays. Many of these beans will be smple
extensons of the exiging Java Swing beans to implement the ServiceBean interface. Beans
implementing an enumerated type will have a property of JBeanStateq] which will mgp state names
(i.e, text to display) to vaues. The display of Java Date vduesis TBD. Additiondly, J.abel classes
will be used to display labe s within the window.

340 453-SDS-SWSI

3.3.11 SSC Editing Panel

SWSI permits editing of existing DAS SSC parameters through the use of the SSC Editing Panel. To
access this panel a user would sdlect the “Edit SSCS” menu item from the Admin Menu of the SWS
Main Pand which invokes a pand smilar to the one shown in Figure 29.

Enabling the SSC fidd for entry first requires the user to select aSIC value. Theligt of available SICsis
retrieved using the DataManager’ s getSI Cs method and consists of only those for which the user is
flagged as having misson adminigrative privileges. After selecting a SIC value the user may sdlect an
SSC from the list of SSCs retrieved using the DataManager’ s getSSCList method. The user may edit
any of the parameters for an SSC by pressing the “Edit” button, which becomes enabled after an SSC
issdlected. Pressing the “Edit” button invokes a ServiceParmWindow containing the latest SSC
parameter vaues retrieved from the database. Simultaneoudy, the client sgnasthe Isolator to “lock”
the SSC sdlected preventing other users from modifying the SSC's default parameters. Once the user is
done editing the parameter values and presses the “ Submit” button on the ServiceParmWindow, the
SSC parameter values are sent to the I solator to be stored in the database, and the SSC is unlocked.
The SSC is aso unlocked if the user decides to abandon the editing session by pressing the “Cancd”
button on the ServiceParmWindow or when user logs off.

[E3 Edit S5Cs

| 2IC |n33e vi 850 [RE v ‘
‘Cancel I

Figure 3-29 DAS SSC Editing Panel

341 453-SDS-SWSI

3.3.12 DAS Resource Availability

Sdecting the DAS ‘Resource Avallability Request’ from the main control pane would result in a menu
pand from which the user could choose to request a DAS resource availability report by specifying the
time window within which the service is dedred. This pand is shown in Figure 3-30. The ‘TDRSs
Sdected is a checkbox dlowing multiple sdections. The list of TDRSs would be crested from the list
provided in the SetupObject to the client. A user can sdect multiple TDRS or ‘Any’, which indicates
no preference in selecting TDRSs for use. In thislatter case, DAS would make the TDRS selection and
indicate when if any TDRS handovers would occur.

DAS Resource Availability Request

Window Start Time

Window Stop Time

Minimum Duration

SIC \ 4 TDRSs Selected

'/ Set maximum lines Any

TDE
TDW
TDS
171
275

Maximum lines

ORI |

Submit Cancel

Figure 3-30 DAS Resource Availability Request Panel

The DAS Availability panel, showing the resource availability report, is shown in Figure 331. This
pand may contain additiona columnsindicating DAS resources available. This pand will contain a non
editable header showing the corresponding DAS Availability Request made by the user. The ‘Impact’
column shows, for dedicated users, what impact they might have on other missons by preempting this
time dot. Impacts would be rated as being none, low, or high. A pane of thistype will be created for

342 453-SDS-SWSI

each avallability request submitted. Multiple panels could be brought up to dlow the user to compare
avalabilities during different periods.

DAS Availability

Window Start Time

Window Stop Time

Minimum Duration

TDRSs Selected
SIC
Impact Start Time Stop Time Duration | TDRS

Create Request Cancel

Figure 3-31 DAS Availability Panel

The DAS Availability pand would dlow the user to select aline and creaste a DAS Resource Allocation
Request. If the ‘Create Request’ button is sdlected the DAS Resource Allocation request pane,
discussed in section 3.3.3.6, is generated with the start time, stop time, desired TDRS, and SC
prefilled. Only one line can be selected per request.

343 453-SDS-SWSI

3.3.13 DAS Playback Planning

Sdecting the DAS ‘Playback Planning’ option from the main control pand would result in a menu pand

in which the user could specify the time window within which data retrieva is desred. This pand is
shown in Figure 3-32.

DAS Playback Planning

Window Start Time

Window Stop Time

sic \ 4

Submit Cancel

Figure 3-32 DAS Playback Planning Panel

The DAS Playback Availability report, shown in Figure 3-33, would alow the user to select and
request an available playback. The user would be alowed to make mulltiple selections from the table as

part of the same playback request. The DAS response to this request would be returned to the client in
the form of an adert message.

344 453-SDS-SWSI

DAS Playback Availability

Window Start Time

Window Stop Time

SIC
Start Time Stop Time EventID |A

Desired Transmit Start Time

Destination IP Address

Destination Port Number
O TCP

Desired Transmission Protocol @ UbP

Create Request Cancel

Figure 3-33 DAS Playback Availability Report

3.4 Data Manager

For the main panels the receive data (Active Schedule and Schedule Request), the main menu pane (or
driver) will send the initid request to the DataManager, receive a ‘placeholder’ object from the
DataManager, and set up a listener on this placeholder object. When dita are received and the
DaaMVanager sets the vaue in the placeholder object, the driver’ s listener method will get called and the
driver will in turn cal amethod in the appropriate pand to set the data. Thus, each of these panels will

need a setValue(object) method through which the common object can be passed once it is received.

To get updated data, the pandswill cal one of the following static methods in the DatalV anager:

public static void getUpdatedUSM();

345

453-SDS-SWSI

public static void getUpdatedScheduleRequests();

Subpands making a request for detailed information will need to make a request to a DataManager
gatic method, receive a ‘placeholder’ object, and set a listener on this object to receive an event
sgnding when the data are received. Thisisillustrated Figure 3-34.

1
Component P DataM anager

245 3

Placeholder

Figure 3-34 Data Request Procedure

1 The component will creste a MnemonicRequest object. The class diagram for the
MnemonicRequest class is given in Appendix A. This class provides data needed to define the
different types of requests. The component only needs to fill in the subset of data needed for this
particular request. The component will creste amnemonic name gtring using the naming convention
given in Appendix A. This mnemonic name sring dso gets set in the Mnemon cRequest object. I
the component has previoudy requested data and created a MnemonicRequest object, the
component can reuse this object to refresh (‘reload’) the data.

2 The component will cal the static method: DataM anager.requestData(M nemonicRequest request);
which will return DataVaue object (described later). Both the DataManager and the component
now have a pointer to the placeholder.

3 The component will cal: addDataVaueChangelistener(this); which will add the component as a
listener on that item

4 Once the DataManager receives avaue for that item, it will cal setObject(object); setting the vaue
in the placeholder.

5 The Datavaue object will cdl the dataVdueChanged(DataV dueChangedEvent) method of dl its
ligeners, derting them that the placeholder now has a(n updated) value.

6 The component can now get the common object by caling the getObject() method on the
DataV due (placeholder) object.

346 453-SDS-SWSI

Figure 3-35 illudtrates the event class and event listener interface.

java.util.EventObject java.util.EventListener
T <<interface>>
DataV alueChangedEvent T

DataValueChangel istener
<<interface>>

void dataV alueChanged(DataV alueChangedEvent);

T

Panel

Figure 3-35 Event Class and Listener Interface

The DataVaue dass diagram given here ligs its methods:

Datavaue

public void addDataV alueChangeL i stener(DataV alueChangel i stener)
public void removeDataV al ueChangel istener(DataV alueChangel istener)
private void fireDataV alueChanged()

public object getObject()

public void setObject(object)

Figure 3-36 DataValue Class Diagram

347

453-SDS-SWSI

The following class diagram show the methods avalable through the DataManager, including the
methods used to retrieve the Static data:

DataM anager

public static DataV alue requestData(M nemoni cRequest)
public static void stopData(String)

public static DataV alue requestAlerts(String)

public static void stopAlerts(String)

public static synchronized void sendObject(object)

public static void getUpdatedUSM s()
public static void getUpdatedSchedul eRequests()

public static Vector (of String) getTdrslds(boolean getMult, boolean getNCC, boolean getDAS)
public static Vector (of String) getSICs(boolean getNCC, boolean getDAS)

public static Vector (of PrototypeEvents) getPrototypeEventList()

public static Vector (of SSC_List) getSSCList(boolean getNCC, boolean getDAS)

public static Vector (of String) getSupidenList()

public static Vector (of ServiceDescriptions) getServiceDescriptionsList()

public static VVector (of UPDDescriptions) getUpdDescriptions()

public static boolean isEl Fmode()

public static String getUserld()

Figure 3-37 DataManager Class Diagram

3.5 Logging

All the derts received will be logged in afile on the user’s workgation. Other data e.g. , RCTD, and
TTM data will be optiondlly logged. Other than this, no data, static or otherwise, will be stored on the
Client PC due to security concerns.

Log fileswill use asandard naming convention. The following table defines this convention:

Name Description

User ID #.log Logfileof derts

(EIF or norm) rctd (date/time) #.dat return channel time delay data
(EIF or norm)_ttm (date/time) #.dat time transfer message data

Table 3-8. Client L og Files Naming Convention

The Client subsystem’s property file will contain a maximum sze parameter for each of these files. A
new log file will be opened when the maximum sSze is reached, with the _# number in the file name
incremented by one.

Additiondly, the Client can produce debug output to a separate debug output file. The file name and
levd of output are controlled by propety vaues read in from the dient's propety file

348 453-SDS-SWSI

Section 4. Application Server Design

4.1 Overview

The SWS Application Server is desgned to peform three main functions. accept and provide
authentication and security of Client connections, accept connections from the Isolator, and maintain the
data flow to and from the SWSl Client. The Application Server will aso log pertinent information. A
gandard Jswitch Application Server will be used which will be modified to add directives and

messaging.
No vdidations or authentications (of, for example, SARs) are expected at the Application Server. This
will al be done by the SNIF or Isolator.

The Application Server will have a backup on a separate platform. However, falure of the prime
Application Server will necessitate that dl the Client applications and the active Isolator reconnect to the
backup Application Server and reinitidize their sessons. The use of a High Availability (HA) tool will

alow the backup Application Servers to share the same IP address(es). Thiswill dlow the Clientsand
Isolator to connect to the same I P address regardliess of which Application Server is primary.

The Application Server designisgivenin Figure 4-1.

4-1 453-SDS-SWSI

SWSIServer

{main)
Instantiates 3 kARt
Accepts
Isolator | Accepts client
Socket | IsolatorHandler serverHandler e chons
Con- |
nections L AlertlB Spawns, for
each client
o Passes socket connection
=] connections
]
8 Queles
8 DatalanagerAdaptor 2 \WriterThread e
L] ol
Passes sockst & Bulfers =
connections 2 £
S Alets & | © Sairoghar O
* DataManager Data | E Ll DataB each client
Data -_— connection
» (Manages socket R "
Redquests| comnections) eeedieoe
Requests FeaderThread

Figure 4-1 SWSI Server Design

The Application Server will receive al incoming Client requests to connect to SWS. Client
goplications will establish an SSL connection with the Application Server and will exchange digita

certificates with the Application Server for authentication. Client gpplications will then provide auser ID
and password as part of alogin object. This object will be forwarded to the Isolator for verification.
The userID will be retained by the Application Server for later use. The Isolator will repond with a
SetupObject if the user ID and password are verified, which the Application Server will forward back
to the Client. Client connections will be accepted after connection to the Isolator machine is
established.

Isolator connections will consist of 3 socket connections, each of which will beinitiated by the Isolator.
Three ingtances of the IsolatorHandler class will be created to accept these connections. Once these
connections are made, the connections are handed off to the DataManager class via an instance of the
DataM anagerAdaptor class.

The DataManager class will be responsble for maintaining the connection to the Isolator machine. The
DataManager will be responsible for routing requests to the Isolator. Client threads can send requests

4-2 453-SDS-SWSI

to the DataManager, which will be queued for processng. The Data Manager will aso maintain an
ingtance count of each request and dert service. Thisis coordinated with the InfoBus.

The Application Server will maintain the data flow to the Client usng the InfoBus. The InfoBus will
keep a lig of the requests associated with each Client thread. The InfoBus will use a natification
mechanism to inform Client threads when requested data are available. The InfoBus will dso digtribute
the dert messages to each Client thread associated with the dert’s SIC.

4.2 Detailed Design

The SWSI Application Server will use an instance of the ServerHandler class to creeate a server socket
that waits for incoming Client connections. It will then authenticate each Client connection using the
SSL protocol and pass a username/password combination to the Isolator for authentication. Once a
successful connection is made, the instance of the ServerHandler class will clone itsdlf to cregte an
ingtance that will further tend that specific Client comection. A separate cloneis created for each Client
connection.

Two new Client threads will be spawned by the clone. Thus, two threads will exist for each Client
connection. A reader thread will read the socket connection and process requests. A writer thread will
write request responses back to the Client. Both of these Client threads are within the scope of the
ServerHandler clone. The clone tracks whether the Client has responded to previous data sent to the
Client with an ack (DataRequest object) before sending additional data. The ack indicates the Client is
ready to accept more data. This handshaking is designed to prevent the Application Server from filling
its socket with data before the Client is able to accept it.

The ServerHandler class will be responsible for the connection to the Client. The SetupObject is sent
by the Isolator through the Application Server to the Client upon successful login of the Client. The
Client thread will handle adl communication to and from the Client. Only dient oecific informeation is
maintained in these threads. The Client thread will communicate with the DataManager via the InfoBus
to make requests to the Isolator and receive responses. The Client thread will not send a data update
until the Client acknowledges the previous update. This is to prevent buffering old data, which could
cause the Application Server to fail. The desgn will incdlude a smdl FIFO queue of derts, in the event
the Client or network performance fals behind. Old derts will be dropped from the queue if the queue
reachesamaximum sze. Alerts can be filtered by severity so important messages are not dropped.

When the Client requests derts (which the Client will do autométicdly), the ServerHandler clone will
cregte an ingtance of the AlertIB class. This classwill recelve derts off the InfoBus and queue derts for
the SICs being monitored by that Client. Likewise, if the Client makes any other requests, the
ServerHandler clone will creste an instance of the DatalB class. Thiscdlasswill receive responses from
the Isolator off the InfoBus and store the responsesin local buffers. When either the AlertlB or DatalB
classes have data, the writer thread will be resumed to write the queued or buffered data to the Client.

4-3 453-SDS-SWSI

4.3 Data Interfaces
The Application Server will require the following input and output files.
Server Inputs

The Application Server will need digital certificates to authenticate itself to Clients and the Isolator, and
will need the CA certificate to authenticate the Clients. The Server will dso need property files that
contain configuration parameters for the Application Server. The following table lists these:

Name Description

other.prop Provides norn SSL required properties such as port numbers
SSL.prop Provides SSL specific properties (crypto-suite to use, etc.)
SWSI-ca-cert.der Certificate authority certificate

SWSI-server-cert.der Server Certificate

enc-SWSI-server-key.der Encrypted Server key

Table 4-1. Application Server Input Files
Server Outputs

The Server will write to the following two logs

Name Description
bad loginslog Log of rejected login attempts
activity.log Activity log

Table 4-2. Application Server Output Files

4.4 Logging

The Application Server will maintain two log files. All logns (successful or failed) shdl be logged, and
will indude the IP address. The activities of a successful connection will be logged. Thelog will identify
the time and Client connection dong with the activity. The Application Server will be configurable to
have some control over the granularity of logging other data, i.e., what types of requests will get logged.
These logging options will be set as a properties in the Application Server’s other.prop file. Other
properties will include the names of the log files. A separae file will be maintained for the unsuccesstul
login attempts. In order to avoid the log files from growing forever, the Application Server create a new
log file every xx days (xx will be controlled by a property in other.prop). Thisdesign will dlow asystem
operator to delete the old log files. Additiondly, the Application Server can produce debug output to a
separate debug output file. The file name and leve of output are controlled by properties in other.prop.

4-4 453-SDS-SWSI

Section 5. Isolator Design

5.1 Overview

The Isolator Subsystem serves as the centrd communication node for dl the other SWS internd
subsystems. These subsystems are the Application Server, SDIF, SNIF and the SWSI Database
Server which are, in turn, dedicated communication nodes to the end externd eements such as the
NCC/DAS users, the DASCON, the NCC/ANCC and the SWSI databases. Figure 5-1 depictsthe
communication flow between the SWS internd subsystems and externa e ements.

SDIF <

USERS

ISOLATOR |.

Application
Server

NCC

ANCC

Figure 5-1 Communication Flow of SWSI elements

The primary functions of the Isolator are to receive user requests from the Application Server, to
process the requests and to send responses back to the Server to be forwarded to the client. The
Isolator also forwards messages to the NCC/ANCC or DASCON, passes Alert, TTM and UPD
information to the Application Server, stores and retrieves data from the SWSl database and logs
information about user and database activity. The Isolator subsystem resides on the same platform with

6-1 453-SDS-SWSI

the SNIF subsystem, the SDIF subsystem and the SWSl database server (Figure 5-2). However, the
Isolator design dlows for the separation of any or al of those subsystems such that they can run on

different platforms if needed.

- NCC Requests: SDIF

- NCC Replies |

- DAS Requests! - DAS Requests i

- DASReplies - DAS Replies

- User Requests ~Alars - DASDaa |

- User Replies - Status sV |

- Alets : I

. - Alerts !

- Status ! - User |

5 Requests !

i - User

! Replies !

APPLICATION |¢——p{ |SOLATOR i
SERVER i - DATABASE |

| - Alerts SERVER :

i 7y A

_TSW - NCC Requests i g\(/:C Data

T - NCC Replies Al

| - RCTDM - Alerts |

| - Status |

| Locd SNIF i

| Storage > |

; (Fatfiles) | -5 i

@) TCPUDPDB Connections ! - RCTDM
—» Loca dataflow i___:
6-2 453-SDS-SWSI

Figure 5-2 Isolator Context Diagram

As mentioned in Section 2, the SWSl Closed Server component hosts among other subsystems, one
instance of SNIF and two ingtances of the Isolator subsystem. One instance of the Isolator connects
with the Application Server running on the Open Server and the other connects with the Application
Server running on the Backend Server. The functiona difference between the two is one isolator
supports users on the Open IONet and Internet while the other supports the users on the Closed
IONet. The Isolator congsts primarily of the following five mgor threads (see Figure 5-3):

1.
2. Application Server Interface (Servinterface)
3. Database Interface (Dbl nterface)

4,

5. SDIF Interface (SdifInterface)

> D
All Schedule Requests E

Clients Requests R B

1 Vv |
I N
Application | Alerts N T
Server @ T E 4

TCP Port E R
IP=TBD R

Ports=TBD F
F

Clients Replies 2 A A

Real-Time Messages C C

E C

Isolator Main Task (MainTask)

SNIF Interface (Snifinterface)

|ISOLATOR

SDIFINTERFACE >«

TCP Port
IP=Local host
Port=TBD

SDIF

A

\ 4 Database

Database Connection

Server URL=TBD
Name=TBD

A Password =TBD

\ 4

SNIF

6-3

UDP Port
IP=Local host
Port=TBD

453-SDS-SWSI

Figure 5-3 Isolator Main Threads

5.2 Isolator Main Task (MainTask):

The MainTask is the Isolator main thread that creates and starts dl of the other Isolator threads. This
task begins when the Isolator is sarted. The main purpose of this task is to manage and route al
processing and 1/O requests to the appropriate Isolator threads such as. Sarvinterface, Dblnterface,
Snifinterface and SdifInterface. The MainTask is the parent thread and the other four threads (just
mentioned) are the subordinate threads. The MainTask will serve dso as the Isolator executive task
that will monitor the status and events of al the Isolator threads and queues. All of the system message
logging of the Isolator subsystemsis dso handled by thistask and are stored localy inalog file.

5.3 Application Server Interface (Servinterface):

The purpose of the Servinterface is to handle dl the communications between the Application Server
and the Isolator. The NCC data, DAS data and Users data as well as data stored in SWSI database
pass through the Servinterface thread via the Application server on one end and the MainTask thread
on the other end. The communication protocol with the Application Server is srictly TCP/IP and three
ports will be assigned to route the data between the Isolator and the Application Server. The name of
the Application Server host and a base port number are required to connect to the Application Server.
The Servinterface will use a base port number to derive the required three port numbers to get the
secure socket connections with the Application Server. There will be default host name and base port
when the Isolator is started. These default parameters can be overridden by the system’s environment
variables where the Isolator is hosted. The ports are named respectively TP1, TP2 and TP3 and their
default assgnment numbers are:

TP1 = base port number + 0
TP2 = base port number + 1
TP2 = base port number + 2

Each port will handle a specific set of messages, derts, requests and responses as defined below:

5.3.1 TP1Port

TP1 port will be used mainly to accept al the incoming messages from the Application Server. Some of
TP1 messages originate from the NCC customers for ddivery to the NCC and smilarly some other
TP1 messages originate from the DAS customers for delivery to the DAS.

6-4 453-SDS-SWSI

5.3.1.1 SNIF TP1 Messages

The incoming TP1 messages that are bound to SNIF (see Figure 5-4) are:
- Schedule Add Request (SAR) Messages

Alternate SAR (ASAR) Messages

Schedule Delete Request (SDR) Messages

Replace Request (RR) Messages

Wait List Request (WLR) Messages

User Reconfiguration Request (Service Reconfiguration Request) Messages* noted as URRM

in the diagram below

State Vector (SV) Messages

TDRS Scheduling Window (TSW) Messages

Multiple Ground Control Message Request (MGCMR) Messages (include the following)

0 User Reacquisition Request (User_Reacquisition Request) Messages

o Forward Link Sweep Request (Forward Link Sweep Request) Messages

o Forward Link EIRP Reconfiguration (Forward_Link_EIRP_Reconfiguration) Messages

0 Expanded User Frequency Uncertainty Request
(Expanded _User_Frequency_Uncertainty Request) Messages

0 Doppler Compensation Inhibit Request (Doppler_ Compensation Inhibit Request)
Messages

The SAR, ASAR, SDR, RR, WLR, and Service Reconfiguration Request message data will be stored
in respective tables in the SWS database. Once the data has been successfully stored in the SWS
database, the Isolator will send Key Information to the SNIF for further processing. Similarly, the SV
and TSW data will be stored locdly in respective filesIn this case, the Isolator will send TSW and SV
fileinformation to SNIF. The MGCMR informétion is not stored in the SWSl database; this information
will be forwarded to the SNIF and SDIF. (see Appendix C for more details).

6-5 453-SDS-SWSI

SAR
ASAR
SDR
RR
WLR
URRM

Application
Server

5.3.1.2 SDI

|ISOLATOR

TO>»TMIOIMAZ - <OMWM

Local
Storage
(Flat files)

Key, File
Info. &
MGCMR
data

A 4

mO>TxoxmMm—-dZ— ®O

Info. &
MGCMR

data

SAR
ASAR
SDR
RR
WLR
URRM
""Ehta

o o

A

SAR

ASAR

SDR

RR

WLR

URRM

data

N --—_

SNIFINTERFACE

Figure 5-4 Data flow of TP1 Messages bound to SNIF/NCC

F TP1 Messages

The incoming TP1 messages that are bound to DASCON (see Figure 5-5 and Figure 5-6) are:

Resource Allocation Request (RAR) Messages

Resource Allocation Deletion Request (RADR) Messages

Resource Allocation Modification Request (RAMR) Messages

Playback Request (PBKR) Messages

6-6

453-SDS-SWSI

Playback Deletion Request (PBKDR) Messages

Playback Modification Request (PBKMR) Messages

Resource Availability Request (MnemonicRequest-RAV) Messages
Playback Search Request (MnemonicRequest-PBKS) Messages
Planned Events Request (MnemonicRequest-USM_List) Messages
Event Details Request (MnemonicRequest-USM_SCC _List) Messages

Service Reconfiguration Request (Service Reconfiguration Request) Messages * noted as
SERR in the diagram below

Signal Reacquisition Request (User_ Reacquisition Request) Messages *noted as SgRR in the
diagram below

State Vector (SV) Messages

The RAR, RADR, RAMR, PBKR, PBKDR and PBKMR datawill be stored in respective tablesin the
SWSI database (see Figure 5-5). Once the data has been successfully stored in the SWS database,
the Isolator will send Key Information to the SDIF. In turn, SDIF will use the key Information to read
the data from the different tablesin the SWS database, format the datainto XML documents and send
the resulting output to the DAS.

The RAV, PBKSReq, USM_List, USM_SSC Ligt, S'RR, SigRR and SV messages are forwarded
to the SDIF after updating their respective objects with a uniquely generated Request ID from the
SWSI database; the Request 1D is an Oracle sequence number. All messages transmitted from SWS
to DAS will have an incrementing Request ID. The Request 1D will be kept in the SWSI database and
aways be updated by the Isolator or by SDIF depending of the category of the TP1 messages. For
these messages just described (see Figure 5-6) the Isolator will request a new Request ID from the
SWSI database and update the object prior to sending t to the SDIF. For al the other messages
bound to DAS that have been stored by the Isolator in the SWSI database (see Figure 5-5), SDIF will
be responsible to update the request ID prior to transmitting these messagesto DAS.

6-7 453-SDS-SWSI

RAR
RADR
RAMR
PBKR

PBKDR
PBKMR
sV
(Objects)

KD

Application
Server

Figure 5-5

|ISOLATOR

SDIFINTERFACE
Key Info.

1TO>TNMIOmMAHAZ—< XTMwWw
mOX> T OXMAZ—WO

Flow of TP1 DAS Messages that get stored in SWSI database

6-8

453-SDS-SWSI

|ISOLATOR

SDIFINTERFACE

Objects* > SDIF

RAV
PBKS
USM_List
USM_SSC List
SRR
SgRR

(Objects)

©

Database

Request

Application
Server

mOX>» T OM—AZ—®®O0O

mMTO>» TN IxmMmHAzZ—< MW

Figure 5-6 Flow of DAS Messages not stored in SWSI database

5.3.1.3 Users TP1 Messages

The lagt category of incoming TP1 messages are those from the SWSl or/and DAS users who are
requesting information that has been stored in the SWS or the DAS database (see Figure 5-7). These
types of User Requests are:

User Login Request (LoginObject)
User Logout Request (LogoffObject)

69 453-SDS-SWSI

Schedule Request Summary Request (MnemonicRequest — Schedule Request List) *noted as
SRL inthediagram

Active Schedule Summary Request (MnemonicRequest-USM_List) *noted as USM in the diagram
View SSC Request (MnemonicRequest-SSC)

Modify SSC Request (ModifySSC)

Other TBD User request (----- Req)

|SOLATOR
USM
SDIFINTERFACE » SDIF
LoginObject
LogoffObject
MnemonicRequest S
USM
L?;ll_/l E | Request g
_sSC R | Objects |
~MoxifySSC \I/ N
______ Req
. T Database
(Objects) N
— T E TP saver
E F
R A
Application F
Server A C
C E
=

Figure 5-7 Flow of TP1 Common User Request Messages

6-10 453-SDS-SWSI

The Active Schedule data for SWSl usersis kept in the SWS database, however, this is not the case
for DAS. The Active Schedule datafor DAS usersis only stored in the DAS database and therefore a
request must be forwarded to DASCON viathe SDIF to ask for the DAS Active Schedule Summary.
When the Isolator receives an Active Summary Request (USM_Ligt) and it finds that the user
requesting that datais a DAS user, the isolator will send aUSM_List Request to SDIF to get the active
schedules from DASCON. The Isolator will wait for the receipt of the USM_List Response from
SDIF before merging the active schedule data from both NCC and DASCON. In the case where
SDIF did not respond to the request after a TBD time-out, the Isolator will send to the Application
Sarver only the active schedules from the NCC and an dert message reflecting the SDIF time-out
dgtuation. The USM_List SSC request will work the same way as what we ve just describe for the
USM_List but by sending the detailed event information from both the NCC and DASCON.

5.3.2 TP2 Port

All the users login, logout and requests messages that were received from TPL port will generate
responses that will be sent from the Isolator to the Application Server via TP2 port. TP2 will aso be
used to trangmit critical red time messages such as UPD messages to the Application Server. The
following figure (5-8) describes the flow of TP2 Messages.

6-11 453-SDS-SWSI

|SOLATOR
SDIFINTERFACE SDIF
DAS Responses F?:Q/S
S and UPD Status USM List
£ (Objects) D USM_SSC_
R . B List
Replies | UPD datus
v Objects
| N
— N T Database
Application T E*T® sove
Server E R T
R F
A GCMD
F A GCMS
Clients Replies A = AFN
Real- Time Messages C SRM
= RCTDM USMs
4\% data
< SNIF
Key, File
Info. &
1 1PN Aata

Figure 5-8 TP2 Data flow Messages

User Request for data from the agpplication server will be wrapped into MnemonicRequest objects.
Isolator responses to the application server will be wrapped into MnemonicData objects. The
mnemonic name given in these objects would indicate the type of data request/reply. A detall
description of the MnemonicRequest and MnemonicData objects with al the supported messages is
given in the SWSl Common Objects section in Appendix A.

5.3.3 TP3 Port

The third port TP3 will be used only to transmit the derts messages to the Application Server. All the
alert messages from the Isolator, SNIF and SDIF are stored in the SWSl database. SNIF will be
responsible to ore its generated aert messages directly into the SWSl database and at the same time

6-12 453-SDS-SWSI

forward them to the Isolator for further transmisson to the Application Server. However, the Isolator
will store SDIF generated derts as well as Isolator generated aderts into the SWSl database. Figure 5-
8 describes the data flow of the Alert Messages.

|ISOLATOR

SDIFINTERFACE

< Alats SDIF

RAR
S RADR
E D RAMR
- o | | e
V | PBKMR
| N (Update data)
Application 4Aler‘ts N ; Alets | Database
Server @ -IIE- R < > Saver
R - t
F A
A C
Alets
C E
E

< Alats SNIF

Figure 5-9 TP3 Data Flow of the Alerts Messages

6-13 453-SDS-SWSI

Appendix C describesin detail the format of the alert messages between SNIF and the Isolator. SNIF
aert messages will be converted by the Isolator into aert objects conforming to the Alert class as
defined in the SWSl common classes and then transmitted as seridized Java object to the Application
server.

The Servinterface will be respongble to get the name and base port number of the Application Server,
to initiate its communication threads and to monitor their status. The Servinterface will creste 3
subordinates threads each responsible for processing the data of the 3 ports naming TP1Thread for port
1, TP2Thread for port 2 and TP3Thread for port 3. All the threads will perform their respective I/O
processing independently and will exchange the data with the other Isolator threads/objects via their
parent task Servinterface. In turn, the Servinterface task will exchange data with other objects via its
parent task MainTask, thus following atop down hierarchy. All the threads are required for the normal
operation of the Isolator, which also means that al 3 sockets connections must be aways up, and
running with the Application Server. When the connection of one of the port is logt, Servinterface task
will turn off the other active connections and will restart itself for new connections with the Application
Server. The log file will be updated with connection events that will indicate the time the connections
were made or lost. The exchange of data between the Isolator and the Application Server are donein
seridized objects and are described in Appendix A.

54 Database Interface (Dblinterface):

The purpose of the Database Interface (Dblinterface) is to store, retrieve and update SWSI data found
in the SWSl database. Data sent from the Application Server will be stored in the appropriate SWS
database tables and requested data will be retrieved and sent to the Servinterface task for transmisson
to the Application Server. The Dbinterface task will connect to the SWSI database hosted on the same
locd machine as the Isolator. The Dbinterface requires the name of the Oracle data base driver, the
URL of the SWSl database instance, an authorized account name and password to the database.
Once connected, Dbinterface will make JDBC calls to PL/SQL stored procedures for data storage,
retrieval and updates.

It isimportant to note that the Isolator, SDIF and SNIF will be storing data to the SWSI database. The
user data coming from the Application Server to the Isolator along with aert messages generated by the
Isolator are stored by the Dbinterface task. All updates to the SWS database by the Isolator, SDIF
and SNIF are synchronized by Oracle to avoid any loss or corruption of data. Both of the Isolators
and SNIF will be palling the database at a low priority to detect any new data stored by the other
ubsystem.

5.5 SNIF Interface (Snifinterface):

The purpose of the SnifInterfaceis to handle dl the communications between the SNIF and the |solator.
The communication protocol with SNIF is drictly UDP and only one port will be assgned to route the
data between the Isolator and SNIF. The name of the host computer where SNIF is located and a
communication port number are both required exchanging data between both subsystems. As we've

6-14 453-SDS-SWSI

mentioned before, SNIF and the Isolator will be located on the same platform; therefore, the default
name of the hogt platform for both will be referred as “locahost”. The default port number is sat to
31416; the default port number can be overridden by changing the appropriate system environment
vaiable.

5.6 SDIF Interface (SdifInterface):

The purpose of the SdifInterface is to handle dl the communications between the SDIF and the Isolator
itself. The communication protocol with SDIF is TCP/IP and only one connection port will be assgned
to route the data between the Isolator and SDIF. The Isolator will be the client Sde and SDIF will be
the Server Side. Similarly to SNIF, SDIF will aso be collocated with the Isolator and therefore, the
default name of the hogt platform will be referred as “localhost”. The default port number to connect to
SDIF is st to 31417 but can dso be changed via the setting of the system environment variables.

5.7 Logging

The Idolator subsystem logs dl the OS or database related errors in alog file. System messages are
aso logged and are time-tagged dong with the source of the thread from where they were issued. The
log file(s) can be viewed at anytime by SWS deveopers for anayss and/or debugging. All the derts
generated by Isolator are logged and then stored in the ALERT M essage database table.

6-15 453-SDS-SWSI

Section 6. SWSI-NCCDS Interface Design

6.1 Overview

The SWSI-NCCDS Interface (SNIF) performs dl eectronic message-based communication with the
operationd NCCDS and with the ANCC for performing Engineering Interface (EIF) testing. The SNIF
edtablishes and maintains al the TCP connections required for implementing the full customer message
interface as defined in the NCCDS/MOC ICD for full support customers. Separate sets of connections
are maintained for each group of missons as defined in the SWS database. The SNIF is dso
responsible for maintaining the active schedule in the SWSl database based on the Schedule Result
Message (SRM) and User Schedule Message (USM) responses received from the NCCDS. The
following sections describe the operating environment of the SNIF and the detailed design.

6.2 Operating Environment

SNIF is a multi-threaded "C" application that executes as a single Unix process under Solaris 7. SNIF
uses the POSIX thread Application Programming Interface (AP), or pthreads, a tandardized threading
implementation that alows asynchronous execution of concurrent tasks within a single gpplication. The
primary bendfit of threading to the SNIF gpplication is to alow the efficient control of multiple TCP
socket connections without having to resort to a complicated mechanism of non-blocking 1/0 and
polling. A separate POSIX thread controls each connection. If asocket read is blocked because data
is unavailable, the thread is suspended to alow execution of other threads within the SNIF gpplication.

Synchronization or communication between threads is provided by a mutua excluson mechanism cdled
the mutex. The mutex dlows for locking of data that is shared between threads.

The primary mechanism used by the SNIF for communication between threads is the message queue.
Since pthreads doesn't provide queueing, a custom package is used that uses mutexes for locking queue
data structures. The SNIF queue modd is meant to roughly imitate a Smilar capability provided in the
old Ready Systems VRTX32 redl-time embedded OS kerndl. In generd, it works by alowing threads
to "pogt” amessage buffer to another thread's queue. A thread retrieves messages from its own queue
by "pending", which suspends the thread until a message arrives, or by "accepting”, which does not
suspend the threed if itsinput queue is empty.

6.3 Detailed Design

The context diagram for the SNIF is shown in Figure 61. Communications with the Isolators is
according to the protocol described in Appendix C. Each Isolator will listen on a separate User
Datagram Protocol (UDP) port, while the SNIF will recelve messages on a single UDP port. All
outbound messages will be sent to both Isolators, snce the SNIF will have no knowledge about which

6-1 453-SDS-SWSI

clients should receive a particular message. The Application Servers will be responsible for examining
the messages to determine which open or closed client(s) should receive the messages.

Isolator
(Closed
C|ien'[s) Closed Isolator Messages

TTM, RCTD

Schedule Requests
TSW
sV
GCMR

Schedule Results
Performance Data
GCM Status/Disposition

TSW, SV

Open Isolator Messages

Isolator ‘x

(Open TTM, RCTD
Clients)

SWSI-NCCDS
Interface

—/_:— (SNIF)

Schedule Requests
TSW

Schedule Requests
Active Schedule
User Reconfiguration (GCMR)
Alerts

sV

o \
Schedule Results

Performance Data
GCM Status/Disposition ANCC

\

SWSI
Database

Log File

Figure 6-1 SNIF Context Diagram

The SNIF communicates with both the operationa NCCDS and the ANCC. A separate set of
connectionsis used for each fecility.

The top-level data flow diagram is shown in Figure 6-2. Each bubble represents a functiona process
that eventudly decompaoses into a number of primitive threads. The C program "man” is used to
initidize the software and creste the appropriate threads. After "main” completes execution, each thread
runs independently. Communication between threads is primarily through message queues. Queues
provide a pipeline for messages to be passed between threads. All queue operations are performed by
functions provided within the SNIF gpplication.

6-2 453-SDS-SWSI

Alert messages are shown in the context diagram but are not shown in any of the lower level data flow
diagrams. Any SNIF thread is capable of generating an dert to be sent to the Isolators and stored in
the Database. The aderts are not shown so asto smplify the diagrams.

Schedule Requests
Open & Closed Isolator Messages Out TSW —_—
SV
GCMR

2
NCCDS
Interface

Schedule Results
Performance Data

GCM Status/Dispositiofm——

NCCDS Isolator Messages In

Closed Isolator Messages

1.
Read
Isolator
Messages

NCCDS I/F Database

TTM, RCTD TSw, sV

ANCC I/F Database

Open Isolator Messages

Schedule Request—s/_'
TSwW

SV

ANCC lIsolator Messages In GCMR

3
ANCC
Interface

Schedule Results
Open & Closed Isolator Messages Out Performance Data

/ GCM Status/DispositiGR——___

Figure 6-2 SNIF Level 0 Data Flow Diagram

A detailed description of each process and primitive thread is given below. A separate functiond
process is provided for each of the NCC interfaces (NCCDS and ANCC). Data flow diagrams for
these processes are given in Figures 6-3 and 6-4. The processes are identical with the exception that
they each access a different database instance and communicate with a different NCC system. Only a
description of the NCCDS Interface is provided.

6.3.1 Read Isolator Messages

Read Isolator Messages is a thread that is primarily responsible for routing incoming 1solator messages.
The Read |solator Messages thread listens for messages from both Isolators on asingle UDP port. The
messages are routed to the gppropriate NCC interface process depending on the routing indicator in the
message header.

6.3.2 NCCDS Interface

The NCCDS Interface process controls al communication with the NCCDS. Incoming Isolator
messages are received through the Read |solator Messages thread. Outgoing Isolator messages are

6-3 453-SDS-SWSI

sent directly to both the open and closed Isolators. A data flow diagram for the NCCDS Interface
processis given in Figure 6-3.

SAR

SDR
ASAR

RR
WLR

SCHEDULE_REQUEST

NCCDS Isolator Messages In

2.1
Manage NCCDS
Communications

SV ——

Open & Closed Isolator Messages Out

UPDR™ >
SV
— 2.6
UPD Receive
AFN pmdata uPD
DCTDM, TT o RCTDM
USR_GCMR GCMR TT™

AFN

ACTIVE_SCHEDULE ~status @ GCMR ——»
GCM s&D g
2.8
Receive
GCM S&D,

Figure 6-3 NCCDS Interface Data Flow Diagram

Manage NCCDS Communications is the primary thread responsgible for processng NCCDS messages.
The remaining threads are used to control the NCCDS connections as defined in Table 43 of the
NCCDSMOC ICD. A separate thread is assigned for each service, with two threads required for the
reconfig (GCMR) service because data flow is bi-directiond. Only single threads are needed for the
schStatus and pmData services because the Schedule Result Request (SRR) and User Performance
Data Request (UPDR) messages are treated smply as initidization messages to be trangmitted when the
connection isfirst established. A separate instance of each thread is used for each NCCDS connection.

The connection control threads serve two functions. The firgt function is to establish and nantain
connections to the appropriate NCCDS services according to the configuration described in the
SCHEDULE _CONNECTION and REALTIME _CONNECTION Database tables. These

6-4 453-SDS-SWSI

configurations are read a SNIF startup. Changes in the configuration will require arestart of the SNIF
goplication.

The connections for the schStatus, pmData, and reconfig services will be permanent connections. The
schReq, tswStore, and acqStore connections will be established only when there are requests to be
tranamitted. The connections will be timed out after periods of inactivity as defined by the Database.
The other function of these threads is to read or write messages in eXterna Data Representation (XDR)
format on the connections being controlled. The messages exchanged with the Manage NCCDS
Communications thread are in the raw formats as defined in the ICD.

6.3.2.1 Manage NCCDS Communications

Manage NCCDS Communications is a single thread that performs the mgority of the processng of
messages passing through the SNIF. For messages outbound to the NCCDS, the Manage NCCDS
Communications thread receives information about a message or request from an I solator message and
database entry and constructs the NCCDS message in the appropriate format. For messages inbound
from the NCCDS, the Manage NCCDS Communications thread interprets the message for immediate
processing as in the case of SRMs and USMs, reformats the message for transfer to the client asin the
case of User Performance Data (UPD), or generates a SWSI-formatted dert as in the case of Ground
Control Message (GCM) Status and Disposition (S& D) and Acquisition Failure Notification (AFN).

The Manage NCCDS Communications thread will poll the Database periodicaly for requests that have
been saved but not transmitted. Thisis to compensate againgt the loss of an Isolator UDP message that
indicates storage of a request message. The file system directories holding TDRSS Scheduling Window
(TSW) and State Vector (SV) messages will be smilarly polled so that messages aren’t hed indefinitely
by SNIF due to lost Isolator messages.

Following is a description of how each NCCDS message is processed by the Manage NCCDS
Communiceations thread.

6.3.2.1.1 Schedule Request

Schedule request messages (SAR, SDR, ASAR, RR, WLR) are received by the SNIF from the
Isolator in the form of arequestld key referencing a record in the SCHEDULE_REQUEST table. The
NCCDS message is congtructed from this information. The message is queued to the appropriate Send
Schedule Request thread and the status of the request is changed to QUEUED.

6.3.2.1.2 Schedule Result Message

Schedule Result Messages (SRMs) are received from the Recelve Schedule Result thread. The status
of the referenced request is updated in the SCHEDULE REQUEST table in the database based on the
result and explanation codes received in the SRM. If the codes indicate a deletion and the event had
been previoudy scheduled, then the event is deleted from the ACTIVE_SCHEDULE table. Inthe case
of al SRMsreceived, an dert is sent to the Isolators for display on the client(s).

6-5 453-SDS-SWSI

6.3.2.1.3 User Schedule Message

User Schedule Messages (USMs) are received from the Receive Schedule Result threed. The USM is
used to add an event to the ACTIVE_SCHEDULE and associated database tables. If an evert is
gored in ACTIVE _SCHEDULE with the same event ID, then that event is overwritten with the
information from the new USM. An dert is sent to the Isolators for each USM received.

6.3.2.1.4 TDRS Scheduling Window Message

TDRS Scheduling Window (TSW) messages are received by the SNIF from the Isolator in the form of
afilename. The TSW is vadidated to ensure that the SUPIDEN matches the SIC from the Isolator
message header. The filename information is then passed through to the appropriate Send TSW thread
as determined by the Isolator message SIC.

6.3.2.1.5 State Vector

State Vector (SV) messages are received by the SNIF from the Isolator in the form of afilename. The
SV isvalidated to ensure that the SIC in the vector matches the SIC from the Isolator message header.
The filename information is then passed through to the appropriate Send SV thread as determined by
the I solator message SIC.

6.3.2.1.6 User Performance Data

User Performance Data (UPD) messages are received from the Receive pmdata thread. The UPDs are
parsed and reformatted from binary data into name-vaue pars. The name-vaue parsare sored in PD
messages that are sent to the Isolators. The PD message types are as described in the UPD database
table.

6.3.2.1.7 Acquisition Failure Notification

The Acquistion Failure Naotification (AFN) is received from the Receive pmdata thread and is sent to
the Isolators as an dert.

6.3.2.1.8 Return Channel Time Delay Message

The Return Channd Time Delay Message (RCTDM) is received from the Receive pmdata thread. The
message is sored in raw form in afile. The filename information is sent to the Isolators.

6.3.2.1.9 Time Transfer Message

The Time Trandfer Message (TTM) is received from the Receive pmdata thread. The message is
gored in raw formin afile. The filename information is sent to the |solators.

6-6 453-SDS-SWSI

6.3.2.1.10 Ground Control Message Request

User Reconfiguration Request messages, which are a type 98/04 Ground Control Message Request
(GCMR), are received by the SNIF from the Isolator in the form of amsgld key referencing arecord in
the USR_GCMR table. The NCCDS message is congtructed from this information. The message is
queued to the appropriate Send GCMR thread and the status of the request is changed to QUEUED.

The remaining GCMR message types are received from the Isolator as messages described by name-
vaue pars. The NCCDS message is condructed from the name-vaue pars. The message is then
gueued to the appropriate Send GCMR thread.

6.3.2.1.11 Ground Control Message Status and Disposition

Ground Control Message (GCM) status and disposition messages are received from the GCM S&D
thread. The datus of the referenced request is updated in the USR_GCMR table. If the referenced
GCMR is a User Reconfiguration Request and the GCMR was accepted, then the USR_GCMR table
is updated to reflect the new parameter settings. An dert is sent to the Isolators for each GCM dtatus
and disposition received.

6.3.2.2 Send Schedule Request

The Send Schedule Request thread sends messages to the NCCDS through the schReq service. A
connection is established only when there is a request to be transmitted. The connection is closed after
a period of inactivity. Schedule request messages (SAR, SDR, ASAR, RR, WLR) are received from
the Manage NCCDS Communications thread. The User ID and Password are inserted into the
message. If a connection is successfully established and the message is tranamitted, then the status of
the request in SCHEDULE _REQUEST is changed to TRANSMITTED and an dert is sent to the
Isolator indicating a successful transmission.

6.3.2.3 Receive Schedule Result

The Recelve Schedule Result thread receives messages from the NCCDS through the schStatus
sarvice. A pemanent connection is maintained on this service. When firgt etablished, a Schedule
Result Request (SRR) message is constructed from configuration information in the database and is sent
to the NCCDS. Schedule Result Messages (SRMs) and User Schedule Messages (USMs) received
on this connection are sent in raw form to the Manage NCCDS Communications threed.

6.3.2.4 Send TDRSS Scheduling Window

The Send TDRSS Scheduling Window (TSW) thread sends messages to the NCCDS through the
tswvStore service. A connection is established only when there is a message to be transmitted. The
connection is closed after a period of inactivity. TSW messages are received from the Manage
NCCDS Communicetions thread in the form of a filename. The User ID and Password are inserted
into the message. If a connection is successfully established and the message is transmitted, then thefile
ismoved to an archive directory and an dert is sent to the Isolator indicating a successful transmission.

6-7 453-SDS-SWSI

6.3.2.5 Send State Vector

The Send State Vector (SV) thread sends messages to the NCCDS through the acqStore service. A
connection is etablished only when there is a message to be transmitted. The connection is closed after
aperiod of inactivity. SV messages are received from the Manage NCCDS Communications thread in
the form of a filename. If a connection is successfully established and the message is tranamitted, then
the file is moved to an archive directory and an dert is sent to the Isolator indicating a successful

transmisson.

6.3.2.6 Receive pmdata

The Recelve pmdata thread receives messages from the NCCDS through the pmData service. A
permanent connection is maintained on this service. When first established User Performance Data
Request (UPDR) messages are congtructed from configuration information in the database and are sent
to the NCCDS. A segparate UPDR is sent for each SUPIDEN supported on that connection. All
UPDRs sent will be to enable UPD transmisson. UPDs, Acquidtion Falure Notification (AFN),
Return Channd Time Delay Messages (RCTDMSs), and Time Trandfer Messages (TTMs) received on
this connection are sent in raw form to the Manage NCCDS Communications thread.

6.3.2.7 Send Ground Control Message Request

The Send Ground Control Message Request (GCMR) thread sends messages to the NCCDS through
the reconfig service. A permanent connection is maintained on thisservice. GCMRs are received from
the Manage NCCDS Communications thread. The User ID and Password are inserted into the
message. If the message is successfully transmitted, then an dert is sent to the Isolator indicating a
successful transmission. For type 98/04 GCMRs the status of the request in USR_GCMR is changed
to TRANSMITTED.

6.3.2.8 Receive Ground Control Message Status and Disposition

The Recelve Ground Control Message Status and Disposition (GCM S& D) thread recelves message
from the NCCDS through the reconfig servicee. GCM S&D messages received on this connection are
sent in raw form to the Manage NCCDS Communications thread.

6.3.2 Logging and Delogging

The SNIF logs al formatted messages exchanged with the NCCDS, as well as sgnificant events and
errors such as connection establishment and loss. The logs will use the NCCDS Centrd Delogger
(NCD) format. The NCCDS Protocol Gateway (NPG) delogger will be used to delog and display
previoudy logged data.

The SNIF will provide an additiond level of logging to usein debugging application or system problems.
This logging will be under the control of a debug flag that is st when the gpplication is invoked. All
Isolator messages will be logged, as well as additiona actions such as updates to Database tables,

6-8 453-SDS-SWSI

updates to SNIF globa tables, and queue message posts and pends. Debug output will be written to a
text file for viewing and editing by standard Unix utilities.

3.2
Send
Schedule
Reques

Status’

SAR
SDR
ASAR
RR
WLR

SCHEDULE_REQUEST

3.3

Receive
Schedule
Result

-

ANCC Isolator Messages In TSW filename

3.1
Manage ANCC
Communications

Sy ——»

Open & Closed Isolator Messages Out

USR_GCMR

ACTIVE_SCHEDULE

3.
Receive
GCM S&D,

Figure 6-4 ANCC Interface Data Flow Diagram

GCM S&D

69 453-SDS-SWSI

7. SWSI-DAS Interface Design

7.1 Overview

The SWS-DASCON Interface (SDIF) peforms dl eectronic message-based XML-based
communication with DASCON (See Figure 7-1). The SDIF edtablishes and maintains a TCP
connection required for implementation of XML messaging interface with DASCON as wdll as SDIF
maintains another TCP connection with Isolator for passing messages fronvto Isolator/DASCON. The
SDIF is responsble for converting seriaized objects coming from Isolator into XML structures, which
are sent to DASCON, and converting XML structures coming from DASCON into seridized Java
objects for sending them to Isolator. The SDIF is dso respongible for logging Alert messages and other
messages consdered to be "Alert" messages into database. The following sections describe the detailed
design of the SDIF.

Isolater D b SDIF fTCPJ,mL-"—‘ DAS

Java Serialized|
Obijects

ST
Database

Figure 7-1 SDIF Context Diagram

-1 453-SDS-SWSI

7.2 SDIF Functionality
The SDIF's functionality can be broken into three main pieces.
Handling outgoing traffic — Isolator to DASCON Interface
Handling incoming traffic — DASCON to Isolator Interface
Contacting database for logging and periodic message retransmission.
The following sections will describe in detall listed above tasks.

7.2.1 Isolator to DASCON Interface

The SDIF keegps a TCP connection to Isolator in order to exchange messages back and forth. On this
connection Isolator is delivering messages as seridized Java objects to the SDIF. When SDIF receives
a messge it de-seridizes it into respective Java object and decides what action should be taken
according to a message. If a message receives wrapped into mnemonic message object then the SDIF
extracts actud message from it.

7.2.1.1 Detailed design

The messages flowing from Isolator to DASCON through SDIF can be broken down into three
categories with the gppropriate actions taken (See Figure 7-2):

Service Allocation Messages — the message is wrapped into mnemonic object. The message
itself contains specification of primary key by which the message can be found in the database.
The SDIF finds it in the database and converts it into respective XML ingtance. The XML
ingtance is run through validating XML parser to make sure the XML is vaid according to
SWSI-DASCON XML Schema definition. If XML ingance is invdid, then a SWS dert
message is generated back to Isolator and logged to database. Otherwise transmission of the
message to DASCON is tried. If transmission is successful, then the SDIF sets the database
field on the record for this message to trangmitted status. If transmisson fals, then SDIF's
retransmission thread will be responsble for trying to retranamit the message every repeat
interva (configurable parameter).

State Vectors — the message is wrapped into mnemonic object. The message itsdlf contains
specification of primary key by which the date vector can be found in the database. SDIF
fetches the proper state vector (only DASCON needed fidds) from the database and
condructs it into gppropriate XML ingance. The XML ingtance is run through validating XML
parser to make sure the XML is vaid according to SWSI-DASCON XML Schema definition.
If XML ingtance isinvadid, then a SWS dert message is generated back to Isolator and logged
to database. Otherwise transmission of the message to DASCON s tried. If transmisson is
successful, then the SDIF sets the database field on the record for this message to transmitted

-2 453-SDS-SWSI

datus. If tranamisson fals, then SDIFs retransmission thread will be responsible for trying to
retranamit the message every repest interva (configurable parameter).

All other messages are queued. As each message is de-queued from the queue, it is converted
to the appropriate ingance of XML. The XML ingtanceis run through vaidating XML parser to
make sure the XML is vdid according to SWS-DASCON XML Schema definition. If XML
ingtance is invaid, then a SWS aert message is generated back to Isolator and logged to
database. Otherwise transmission of the message to DASCON s tried. If transmission falls,
then a SWS dert message is generated to Isolator indicating that there was problem with
transmisson.

7.2.2 DASCONto Isolator Interface

The SDIF keeps a TCP connection to DASCON in order to exchange messages back and forth. On
this connection DASCON ddivers messages to SDIF as XML Ingtances conforming to SWS-
DASCON XML Schema Definition. When SDIF receives an XML Instance formatted message, it runs
it through XML vdidating parser usng SWS-DASCON XML Schema Definition. If the instances
passes vaidation test, then further actions are taken as described in the next section, atherwise SWS|
Alert is generated and send to Isolator as well as logged to the database.

7.2.2.1 Detailed Design

The messages flowing from DASCON to Isolator through SDIF can be broken down into three
categories with the gppropriate actions taken (See Figure 7-3):

"Pure" Alert Messages — the SDIF logs such messages to database, converts them from XML
to SWS Alert message and trandfersiit to Isolator.

Messages that are derts according to the matrix - the SDIF logs such messages to database,
converts such messages from XML to SWSI Alert messages and sends them to Isolator.

All other messages are converted from XML to respective SWSI message type and trandferred
to Isolator

7.2.3 Retransmission Thread

As part of SDIF's execution, separate Thread (Retransmission Threed) is launched to handle the task of
re-trangmitting those messages that faled to tranamit at the origind request time (when a message first
received from Isolator). The Retransmission Thread queries database every repest interva (configurable
parameter) for records with saved gatus (that is saved but not transmitted messages). If such records
found, then Retransmission Thread constructs an appropriate XML instance for each message and tries
to retransmit it to DASCON. If message expired and re transmission il failed, then the Retrangmisson
Thread generates SWSI Alert message back to Isolator indicating that transmission failed and message
expired (See Figure 7-4).

-3 453-SDS-SWSI

Isolator

k. 4
&

What 15
message
type?

Service Allocption Request
or Statg Vector

11 other

Fetch From DB 4——‘__‘___

b 4

Construct XL
Instance

| Log alert to DB

KWL Validating

Parser

Log alert to 1M

Mo, generate
SWET Alert
to Isclator

Try for configurable
number of times;
if failed, send alert

to Isolator

Transmit message
toDAS

¥

Tes

Is
Service

Is

3 transmission
Mo, message w] Allocation successful 7
[peniodically Message?
iretr‘i ed for
[TELr ATl S 1E 510ty

R o Mark message
Efransmisson toan s it e

Thread DE

Figure 7-2 Control Logic Overview

-4 453-SDS-SWSI

DAS

HML Validating

Farser

Tz Z{0L
Instance
Walid?

e

What 13

¢ All other

Convert to
appropriate SWSI
message type

mMESsage
type?

At

Mo, create SW ST Alert,

send to Isolator

Logto DB

Log Alertto DB

| 4

Convert to 3WST
Alert Message

v

.| Sendmessage to
7| Isolater

F3

Figure 7-3

Detailed Control Logic

453-SDS-SWSI

Eetransmission

Thread "Eetch not transmitted

IESEaZES

h 4

Mo, sleep and
epeat the task
Mo, sleep and
epeat the task

‘Are there not
transmitted

&

Eepeat for each

message
A Koz alert to DB

Get Message
Lo 11t DB

Has the Construct W31
Alert message » Izolator
and send to Isolator] l

message
expired?

Construct J ML
instance of
the mezsage

HML Validating
Parser

Mo, zsend alert
to Izolator

DAS

h 4

Transmit to DAS

¥

Mark message
transmitted in

Yes DR

Figure 7-4 Retransmission Control Logic

453-SDS-SWSI

7.3 Database Interface

To database access is done using standard JDBC 2.x protocol. The SDIF will be updating database
tables (TBD) to sat flags retransmission flags.

7.4 Support for test and operational modes

The SDIF can support test and operational modes. The SDIF achieves this capability by ingantiating
multiple time's subparts of itsdf that are responsible for communication with DASCON and Database.
Those ingtances are different by parameters supplied to them (e.g. Host and port information). When a
message from Isolator with a flag indicating test mode comes to the SDIF, then the SDIF will contact
test database and messages will not be forwarded to operation DASCON, but rather just dropped or
forwarded to DASCON smulator when one is available. If a message coming from Isolator does not
have test flag set on, then the SDIF will operate in its norma mode contacting operation database and
DASCON itsdf.

-7 453-SDS-SWSI

Section 8. Database Design

8.1 Design Principles and Guidelines

This design follows the generdly accepted relationd database design principles. All the dataiis stored in
it's naturd Oracle type in the database; eg. al the absolute date is Sored in Oracle's “Dae’ type,
relative times are stored in Number format and variable length strings are stored as the varchar2 type.To
dlow for user definable screens, some layout information is included in the database. This information
includes the display order number, postion, and other information to be used by the GUI screen
builder. A SWSl developed Stored Procedures are used to insert into and make updates to al the
dynamic data. Some of the advantages of usng the Stored Precedures are that the complexity of the
logicd schema is hidden from the gpplication layer, dl the business rules are encapsulated in a cenra
place, and the database integity/consstency is assured. The use of the Stored Procedure provides
enhanced performance due to the reduction of independent transacations and aso gives a smplified
view of the schemato the gpplication.

8.2 The SWSI Database Design

8.2.1 Overview

Figure 81 through 8-3 shows the SWS database structure in entity-relationship notation and Figure 8-
4 shows the table views created to get better performance and for ease of use by the application. The
relationships are implemented by using primary keys and foreign key condraints in a sraghtforward
manner. Some tables hold dtatic information and others are dynamicaly updated by SWSl application.
The SWS data administrator is responsible for the data in the satic tables. Some tables are semi-dtic
tables, meaning SWSl data adminidrator is responsble for initidlly setting them up and the SWS

application may modify some of the contents. The gpplication software makes the cdls to the Stored
Prcedures to modify dynamic tables. Appendix G summarizes the tables that are defiend in the SWS

schema.

The information in the dtatic tables is used for building display pands, processng NCCDS messages
and goring other dtetic data like TDRS names, SICs, SUPIDENS.

The SWSI_USER table contains information about each user of SWS!. It so contains security-related
information like IP address of where the connection is made from, account expiration time, number of
faled login attempts, password expiration time. Each user is assgned a group of SICs that he/she is
responsible for supporting. The SIC table has al the SICs SWS supports and the SUPIDEN table has
one-to-many relationship with the SIC table. There can be multiple users supporting the same SIC.

The SSC table contains service specification code (ssc code) assigned by NCCDS for each customized
configuration settings for each service type. It dso contains predefined number of ssc codes to be used

-1 453-SDS-SWSI

with requests made for DAS. Every sscCode for each service type has multiple service parameters with
a default vaue for each parameter. Only priviledged SWS user is dlowed to modify default vaues for
any of the DAS SSC codes.

The SSC PARAM table contains default vaues of al the parameters for each service type supported
by SWSI. The SWSl supports dl the service types supported by NCC and DAS. The parameter
vaues for the NCC supported service types are manudly synchronized with the NCCDS/ANCC
database, while they ae manudly entered by the SWS data adminisrator for DAS services. The
PROTOTYPE_EVENT_CODE table is dso manualy synchronized to match the prototype ids with the
NCCDS/ANCC database.

The SERVICE PARAM table contains information for generating SWS display panels and for
processng NCCDS messages. It contains for example display order, display as (i.e. text box, drop
down list), default vaues, parameter location in the USM message. The default values for each
parameter is obtained from the NCCDS/ANCC database and procedurdly stored in this table. The
SERVICE TYPE table contains dl the valid service types supported by SWSI. . The UPD tables
contain information about processing and displaying UPD messages.

The ALERT_MESSAGE table holds dl the derts received or generated by SWSI for . The
swscomponentid field identifies the source of an dert. The SCHEDULE CONNECTION and
REALTIME_CONNECTION tables are used to edablish and manage connections with
NCCDS/ANCC.

All the Schedule Requests submitted by the SWSI users are kept in the REQUEST and SAR tables.
The REQUEST table contains requests made by a user for requesting resources for TDRS support
from NCCDS (eg. SAR, SDR, ASAR, RR) and from DAS (eg. RAR, RADR, RAMR, PBKR,
PBKDR, PBKMR). The SR_SERVICE table is a child of SAR table and contains al the services
associated with each add event scheduled. The SR_ PARAMS table contains al the parameters
specified in the SSC code used in the service. The parameters that are changed by the user
(respecifiables) are flagged to facilitate congtrunction of a SAR message. The requestid fidd in
REQUEST istied to Oracle€'s sequence counter and is incremented for each new record stored in the
table.

The responses to the Schedule Requests (USMs) are stored in the ACTIVE_SCHEDULE and it's
associated tables. The user Reconfiguration Requests (User GCMRs) are kept in the USR_ GCMR
table. The GCMR_PARAM table contains only the parameters changed by the user during a
reconfiguration request. When a user makes a request for a GCMR, ACTIVE _SCHEDULE is
searched to find the parameter values for the requested service (TDRS, SUPIDEN, service type & link
number). The vaue is overidden if the parameter is dso found in GCMR_PARAMS. The lagt
accepted value found is returned.

-2 453-SDS-SWSI

swsi-01-database on 2/7/2001

L -
TORE_SROUF e SISLLUSER ! REALTIVE_C ONNEE TION
tdr= Group . < char(3) = b I userld :warchary20) - =chConnedionName :warchar2(20) T AConnectonName :warchar 20y
usedByD as : number1) userPriv :numben1) - logDestMame :wvarcharz(20) - noclkerld :warchar2 a0
wsedByMee numben | cryptPasamord Cvarcharz(20) - noclerld :varcharz(20) . .
Byt LY f_tdr=roupMame [contactino : warchar2y 1024 - necPasanord :warcharZ 20) DEC;::,‘?Z? ‘,:z::gég?)
lastLoginlP : varcharz]20) - =chReqTimeout : numben28) :
p_tdrsGrouphame TORS_IN_&ROUP I lastloginDate : date Time - acqStereTimeout : numbe 38
tdi=GroupName : char(3) nuF aile daftemps :r!urrben:zj - tancStoreTimeout : numben3E) ph_rtConnectionMame
- tdrsName : char(3) I passwardBEq :date.Tlrne - =chReghieter : numben38)
fi_TORS accountBp : date Time
] thctive : number(2) P _seht
SAR fie_tdrsMame lastlogOutD ate : date Time . e iCamnectantiame
tequestid : numben7) T _izerd fl_schiConne ction Name
SIC : char(d) ph_tdrsHame -
myetemid : char() RS ANE e userd g §E SERVICE_TPE
TDRS : char(3) ~ Sysl_USER_SIC o sic - seniceType : warchar2[10)
priority : number2) tdizMame : char(3) e @ m — - SIC : chard - seniceBaseType :warcharZ7)
waitlist : numbenZ) tdisDes cription : varchar2(30) - P ST || sehConnedionName “warchar2(20) - seniceSupportType : integer
aitListepir stion : date Time - userld svarchar2(20) | tConmectonMame warcharzrzy | [e_SIC usmPadietSime © integer
eventStartTime : date Time p_SIC |- dasCompatible : number1) I wemf tedParamboc :integer
plusTolerance : number #_SIC_protoEventld . neeCompatible : number1) w=mReconfParamioe integer
minusTolerance : number = wemlinkldlos :integer
freezelnterval : number PROTOTYFE EVENT CODE _SIC - usmlinkldlength :integer
protoEventld : char(Z) — - ph_SIC = gemeAllamed : integer
useTaw : numbenz) " p_SIC_protoBwentld |- SIC : char(# Sic fi_SIC gemPacketSize :integer
i 51 termid - protoEvertld : char(3) — = -
=il _=ys
ph_fequestid_SIC_systamld SUFIDEM ph_serniceType
ph_requestd_SIC_gystemid R cenvinaTyoe
[= W fequestd | fi_refRequestld SUPIDEN : varchar?) E . P
REQUEST b systermid : char(3) =
[requestid cnumbenry | _SIC e
f;lg”_e N numoe #_SUFIDEN T SIC : char®
) : char() f_sIc|- swetemid :char(®)
i td_SIC_systermid ;ﬁ;ﬁ)néil :Char(ﬁ) W7y - SUPDEN F T | sseCode :cha)
o Mrequestic Sl sy i svarcha Teque - serviceType : varchar2(10)
reqType : numbe) = a PLAYBAZK - editable : number(1)
SR_SERWICE "
reqstatus : number2) b _requestid requestld : numben7)
BRI 1 BT T e a— - refRequestld : numben7) fie_requestld y]
9 : q : playBadiStartTime : date Time h_IC_systemd_sscCode
SIC : char(- lz=stRezBExpCode : charid WES ode refequestid : numbe 7 = =
syetermid : char3) - lastResExp Time : date Time &
serviceMumberOrder : integer - creatonTime : date Time fi_reqType f_refR equestlid
szeCode © char(®) la— - i [SIC_systemld_sscCode
reISt.artTlrne : nu.rrber fi_reqStatus
serviceDuration : number SSC_PARAM
_ pe_code)
resutBsplanation Code R
wi_requestid_d erviceMumbe rOr der = e e - SIC :char(d
p_code REQUEST_TFE SR RESULT CODE - mystemid : char(3)
A - — — - sscCode :char()
fh_requestid 4 Order REQUEST_STATUS code :number3) - resulBplanationCode : char(d) - paramMame :warcharZ3)
= - Sode TTuEeE] systemid : char(3) - displayTest :warchara(200) - paramalue :varchar2(20)
SR _FARAM S shortlame :varcharZ7)
— dezcripion : warcharz)80) class : warchar2(3)
Tequestid : numben7) iption : archarsn)
senviceNumberOrder :integer
paramMame :warchar(30)
param\falue :warchard 200
fh_SIC_systermid_sscCode

Figure 8-1 SWSI Database Schema (part 1 of 3)

-3 453-SDS-SWSI

swsi-02-database on 2/7/2001

GCWR_PARAM

L0 T

paamiame :archarZ()
paamialue :archa(i)

PROTOTYPE_EVENT_CODE
P F T TEETE T
+_SIC_pmtoEwntd - pmtoBwentd : char®)
12 []
ALCTRE_SCHEDULE —
SUPIDEN o =]
| ‘ol
SIC : chani#y k_SUPIDEN el numbery) +_TORS TORS_NAVE
SUPIDEN - erchar(7) w suPDEN | SUPIDEN ©archar?) a TR T
systemid ehan) - TORS : chani3) n Pl tdes Mame tars Description : archar2(30)
e chang) -
kBand PnCode : chanz)
sBandPnCode :chanz)
ewrt StatTime : daeTime
pmtoBwentd : chan3)
usmType :numbenZ) ==
statusPending : chanil) [GOMF_REJECT CODE | ph_reectCode
rdectCode ol
ph_SIC_ewentid displayText :ercharZi0)
*_SIC_ewertd
= - - — +_reject Code
ACTIE SCH_SERWICE TR
SIC - chard) -
ewentld :number) mEgi - num|
| seniceMumberOmer :integer ?EIRPISDENrE:;;mal(?)
* 3IC M s=scCod senjcelink archar2i(10) s
-SIE_sstemid_ssclode systemid :chang) senfcelink - archar(10)
sscCode : chan) SERWVICE_TYFE craionTime : daeTime
starTime :daeTime TErdoe ype - BrcharZ (1) St number(?)
stopTime : dateTime senjveBaseType archark(?) reectCode : chanz)
sie " Cote serfoeSuppot Type @ integer =
ph_%IC_systemd_gse . [~ icali uzmPackat Size integer
ph_5IC_enent d_spnice Mumber Order e _senice Lirk usmFixedParamlos - integer 4 cenicelink
E uzmReconfParamlo: :integer = ph_m=ghd
#5C uamlink Lo :integer
T TEETE T uamlinkdlengh :integer
systemid : chan) gomnAlowed :irteger
saCode : chang) gomacketSize :integer
senfcaType :BrcharZ(i0)
edtable :number(l) ule_senineBaseType_sknice SuppotType
#_SIC_erertd_ssniceMurrberOrder
= - #_senice BazeType_geniceSupportType
BLCTIVE_SCH_PARE = - A
L 3I:mrl4J e SERVCE_UME
:;\ri‘ceN..rr:gnge)r integer ph_senicelink senfcelk Tarchar()
. senfceBaseType [archar2(T) P
gﬁm‘;ﬂ: :@:g(%) sericefippoiType ieger pi_senicelink
serjee Support SubType integer
trackConig :integer
safntenna :ineger
maRetumbinkd :integer

Figure 8-2 SWSI Database Schema (part 2 of 3)

453-SDS-SWSI

=

UPL fh_service Type

SERWICE_TWFE

serviceType © varcharz 10)
iceBase Type :varchara(7)

updMame :warcharzz0) [
serviceType :varcharz10)

ph_seniceType |

senviceSupportType - intager

swsi-03-database on 2/7/2001

ph_seniceType

SERVICE_FAR AR

fl_senvice Type |-

zenvivaType ; varcharz 107

EmPadeetsSize :integer paramMarme : varchar230)
usmF ke dParamlboe : integer walue Type : numben2)
wki_updName ue_updName usmReconfFaramios :integer required : numben2)
usmlinkldlos @ integer rangeFlag : number
usmlirkldlength : integer flexFlag : number
gemeAlloned integer fiwedFlag : number2)
gormr PacketSize : integer respecifiable : numben2)
reconfigurable : numben2)
units : warchar2] 1)
o fi_updName gemStartByte | numben2)
TP A usmiStartEyte : numben3)

parambength : numbez)
dizplayOrder : numbenz)
dizplaw®s :varcharZ20)
dizplaylabel : varchar 100
dizplaylength : numbenz)

updMame :warcharz 200
parambame :warcharz(30)
tytelocation : numbenz)
bytelength : numbenz)
type : varchar2 20

uniE :warcharz20)

LSD :warcharz(20)
rowlocation : numbenz)

p_serviceType_paramilame ph_seniceType [paramlame

Scso:JQrE;L: Lc::io_r:‘ u: :: ::;)(2) fk_updHare fi_service Type| parambame
==
SP_ENUM_WALIDATION
p_upddame_paramiame UFD_LABEL

senriceType : numbenz)
paramiame : warchar2(25)
enumbalue : numberz)
enumstring :warchar 200

updMame :warchard207)
tesd :warchar30)
rownlocation : numbenZ)
columnlo cation : numben2)

ACTRATY_LOG

timeTag : date Time
megTex warcharz) 200

fl_updMame_paramtlame

fi_sevice Type_|par ambame

&
FD_ENUM_VALUE

updHame : varcharzray =
paramiame :warcharz(30)
texd : warchar2(30)

walue :warcharz(20)
severity :wvarcharz(20)

SP_NUMERIC_\ALIDATION

ALERT_MESSAGE DEF_DIRECTORIE Service Type : varchara 0]

TESEEType varch‘ﬁ@% TroztName - varcharan) ::r:;’:ﬂ:"_‘en&::’::‘aqgj)
zequencelurmber : numbe i . :

cr:ahonTlrne date Time fileType :varchai2l) masbialue :number
severity | numbe -
swEiC omponnetid : varchar2 20}
alertTed :warchar 2000

SIC : char(d

Figure 8-3 SWSI Database Schema (part 3 of 3)

-5 453-SDS-SWSI

ACTWE_SCHEDULE

LR
- ewatd DaAmte g

- SURIDEN :wmkarny)

- TORS :chargh

- ukechan@

- kBawdPiCode Dchang
- sBadPiCod ichand
- ewaSEMTMe daeTme
- pPRUERIB charg

- nEmTpe sambe rg)

- st Perdig icharh

Actie Schedi ks

FCTVE SCREDULE Y

FCTWE SCH_SERVEE

- et

LB 1]
Nam e gy
semice Nambe Dder heger

- semisLik C@mckarim

SEEm K changh

- gaeCode charg
- s@rTme :daeTme

£opTme (dae Tme

sctie_Schedtk_Semkes [

=R E)
e il
e N

TORS :chargd

ke cohang

kBawdPiCode charg
sBandPiCode charg
cwEETme dae

el vEBATIME) (@32
el vESEATME _d (@ kar2A Ty
e vETpTME 1 (@ mckar2 f
e vEETpTMe_d (@ mciar2in
pRDERYE (GAard

vam Tipe ©uam be r

st s Perding icharch

ERVCE_LTHE

T T2
semice BageType J@Char2q)
semieSApporipe : kgeT
Lemke SIpPOrEILTPe Ikger
TEKCONNG Ikge T

satEna Cheger
maRetrLikid Ckger

Sotie_Sch_Se ks

FCTE SCA_SERVICEY

semke_Lhks |-

¥ cha
el il

1]

b 1)

el vtd_c ka2l

semie Nambe Cirder ©vam be 135y
Temice Lk 1@ rchar2im
seCode (chargd

sBriTme daeTme

SErTme b Emcand i
£ BT e d IBmardin
FTpTme [dFE Tme

SEpTME b Emcandi

rEharAn
m b rEE)

S3ANENNE DN b 13T

AR

TETEE T LT
S ohardd

s Em K chard
TORS :chargd

=g T
phs Tok @i cz
misTok@EIce
Tree 2 I enal
pREER B chard
e Tew ham be 1)

swsi-04-database on 2/7/2001

SCHEDULE_REIUEST_ W

REQUEST

TErE DT

san

S ohard
£y em K chan

rRequestd

bstRe s BpCode tchard
brtfes BpTMe (dak Tie
cratorTme (daeTme

REZUEST_TVPE

T T LTI

Request

figem K :chardh
£ hortham e E char2)
class Ear2d)

descriptor JErka2EnD

SR_SERWCE

TEqYET t Tt T
S ichard

s km K charng

semice Nmbe Kider ©Ineger
feeCode (oharg
REEMTmE o ber
semie Dy@ton mber

Request Tipes

Teques B9 - i Am BE Ty

Teques td_c (@A)

SEEm K chang

S ehand

SURIDEN BMHar)
fetRequestd ©vam be iy

£ h0MHam ¢ Ay
Teq=EME b Am be T

BitRes BpCode (charch
BtRes BpTMe (d3e Tme
BstRes EPTMe 1 @ rchar2il 1
creatonTme :dakTme
cratonTme _y (Emckarif
TORS @rchar2id)

promy vmper
waltiist:vam e r

waltLks tErpiEton (dake Tine
waltLls tBope @ton_y @ rciar2il f
el itSEMTme (daeTme

el SEMTMe) @A
pheTok @ice Shmber
pheTok @Gz b @chanE)
M asTok@ENce Syamber
misTok@ice_) @A)
e e ena |

1 E ka2
s Taw iambe

Secedik_Reqresty

-
SR_SERWGE_W

T

SI_% ukes

L
SEEM K charg
secCode charg)

remice Type B MAA2AD
ediable Tham be 1)

St

Figure 8-4 SWSI Database Table Views

TE & I TN e T
c_mquestd [rckar2gm

S charngh

femic: Nambe iDrder ©uam be rgds)
szcode tohard

=

T ETm

semic: Dyato

senic: Dvator _i 1acha i)
REEpTMe) CIEcharin
sEMTme) mmank i

sEpTme 1 (@Al

453-SDS-SWSI

8.2.2 Stored Procedures

8.2.2.1 SWSI_ActiveSchedule_pkg

Purpose: This package encapsulates a set of interface procedures for inserting active schedule records
into the SWS database. The application can use these procedures to smplify these operations and, in
turn, isolate the underlying logical database representation from the application.

The following interface procedures are provided:

AddUSM - insert an active schedule record, which represents the header information of an
NCC User Scheduling Message (USM).

AddService - insert an active schedule service record, which represents one of the servicesin
the body of aUSM. A USM can contain one or more Services.

AddServiceParam - insert an active schedule service parameter record. An active schedule
service can include zero or more "respecified” service parameters. Each service parameter is
represented as a keyword:vaue pair, both stored in text format.

UpdateStatus - update the StatusPending field of an Active_Schedule if a Delete or Replace
request was issued for arelated SAR.

Purge - Purge the active schedule of events older than a specified time.

-7 453-SDS-SWSI

8.2.2.2 SWSI_ScheduleRequest_pkg

Purpose: This package encapsulates a set of interface procedures for inserting NCC and DAS request
records into the SWSl database. The SWSl/Isolator uses these procedures to smplify these
operations and, in turn, isolate the underlying logica database representation from the application.

The following interface procedures are provided:

AddSAR - insert a schedule request record, which represents the header information of an
NCC User Scheduling Message (SAR) or a DAS Resource Allocation Request (RAR).

AddService - insart a schedule request service record, which represents one of the servicesin
the body of a SAR (or RAR). A SAR can contain zero or more services. A RAR contains one
sarvice.

AddServiceParam - insert a schedule request service parameter record. A schedule request
service can include zero or more "respecified” service parameters. Each service parameter is
represented as a keyword:vaue pair, both stored in text format.

AddPlaybackRequest - insert a DAS Playback request into the Request table. The request
includes one playback time and referenced SAR request ID. Additiond playback times and
referenced SARS can be added by invoking AddPlaybackEvent for each additiona playback
time period.

AddWaitListRequest - Add a pending SAR to the NCC wait list. This procedure setsthe
WaitListExpiration time of the related SAR. If that request is the head of achain of SARs, then
the WaitListExpiration timeis replicated to dl SARsin the chain.

AddDeleteRequest - Insert a schedule delete request to the SWSI database. Thisisan SDR
for NCC requests and RADR for DAS requests.

Purge - Purge schedule and playback requests older than a specified time. As a precaution, no
events are purged that are newer than yesterday.

-8 453-SDS-SWSI

8.2.2.3 SWSI_ScheduleResponse_pkg

Purpose: This package encapsulates a set of interface procedures for handling responses for schedule
requests from either NCC or DAS. The SWSI/SNIF uses these procedures to smplify these
operations and, in turn, isolate the underlying logica database representation from the application.

The following interface procedures are provided:

UpdateStatus - Update a schedule request status and/or result explanation code. If the origind
request was an NCC Schedule Delete Request and the response is an SRM granting the
request, then this procedure also deletes related records from the Active Schedule.

-9 453-SDS-SWSI

8.2.2.4 SWSI_GCMR_pkg

Purpose: This package encapsulates a set of interface procedures for inserting GCMR records into the
SWS database. The gpplication can use these procedures to smplify these operations and, in turn,
isolate the underlying logica database representation from the gpplication.

The following interface procedures are provided:

AddGCMR - insert a GCMR record, which represents the header information of an NCC
Ground Control Message (GCM). The cdler may furnish either

(TDRS + Supiden + SSCcode + Time), or

(SIC + ActiveSchedule. EventI D + Service_ Number)

AddGCMRparam - insert a GCMR parameter record. A GCMR can include zero or more
"respecified” service parameters. Each service parameter is represented as a keyword:value
pair, both stored in text format.

UpdateStatus - Update the status of a GCMR in response to a Schedule Result Message
(SRM) from NCC.

-10 453-SDS-SWSI

8.2.2.5 SWSI_SSCedit_pkg
Purpose: This package encapsulates an interface procedure for editing DAS SSC parameters.
The following interface procedure is provided:

EditSSCparam - Alter the default vaue of an existing DAS SSC parameter.

8.3 Database Configuration

The estimated minimum size for the SWSl database is 65 Mbytes for the data for ten spacecraft, plus
additiona space for messages, derts, etc. Other space is aso required for rollback segments and the
System Globa Area At this time it is better to use the initidly implemented database, ether for
andyticd estimates or to populate it with dummy data for a number of spacecraft, rather than trying to
refinethe a priori 9zing estimates.

8.4 Database Maintenance

8.4.1 Synchronization with NCCDS

The Service Specification Codes (SSCs) for the SWS customers only, the service parameters, UPD
parameters and TDRS names will be imported from the NCCDS to cregte the initial database. The
information about the DAS SSC codes will be obtained from the DAS project and will be stored in the
SWSI database by the SWSl data administrator. Subsequent synchronization will be required when any
of this data is changed in the NCCDS. Procedures will be established to notify the SWSI operations of
the need for an update. The method for updating the SWSl data will be determined later; it could be
manud, through a PL/SQL session, rather than reloading the entire set of data from the NCCDS.
Changes to this data are expected to be infrequent.

8.4.2 Purging

This database will require periodic purging of old data, specificaly the schedule requedts, active
schedule, messages and derts. Scripts will be developed to perform these functions. The frequency of
purging will depend on the number of users, the database size, and the physical disc space available for
the database.

8.4.3 Backup and Recovery

To protect the SWS database from loss of data due to system failure, hardware failure, or media
falure, a backup and recovery plan will be implemented utilizing Oracl€ s Enterprise Manager tool to
perform periodic database backups as required. The Enterprise Manager alows for the automation of
online hot backups of the database, and keeps track of the location, and the latest version of the backed

-11 453-SDS-SWSI

up files. By keeping track of the latest version and location of the database files, the Enterprise Manager
can speed up the recovery process.

8.5 Operational Considerations

SWS will not have any record of Schedule Add Request (SAR) initiated outsde of SWSI. However,
if a Schedule Delete request is made outsde of SWSI on a SAR originaly made from within SWS and
is accepted by the NCCDS, the corresponding request or event will be marked as deleted in the SWSI
database.

-12 453-SDS-SWSI

Section 9. TUT Server

The TUT World Wide Web (WWW) Server provides information about unscheduled TDRS
resources. It conssts of start and stop times of unscheduled use of the Single Access (SA), Multiple
Access Forward (MAF), and S-band Multiple Access Forward (SMAF) antennas, and Multiple
Access Return (MAR) and S-band Multiple Access Return (SVIAR) links for each TDRS. Thisdatais
essentidly the unused time in the schedule, with a few adjusments due to flexible events with flexible
gart and stop times and/or flexible resources.

The customer who desires to view the TUT information uses a WWW browser to accessthe TUT web
address. A query page is returned, on which the customer may select the time periods, services and
TDRSsfor the desred TUT information. When the customer selects the Submit button on the page, the
query is sent to the TUT Server, which extracts the specified information based on the query, formats it
on a Hypertext Markup Language (HTML) page, and returnsit to the customer.

The NCCDS TUT Server provides this service only to customers located on the Closed IONET. The
SWS will extend the service to customers on the Open IONET and Internet by mirroring it to the
Open SWSl Servers. The Closed SWSI Server will periodicaly upload the raw TUT data file and
pass it through the NISN Secure Gateway in order to maintain timely TUT information on the open
networks.

The Closed SWSl Server will periodicdly run a Java command-line web-client (TUT Proxy Client) to
retrieve the raw TUT information file. This TUT Proxy Client will run asa Unix cron job on the Closad
SWS Server. The TUT Proxy Client will then initiate a connection to a stand-alone process (TUT
Proxy Server) running on the Open SWS Server. The TUT Proxy Server will listen for connections
from the TUT Proxy Client on a dedicated TCP Port al the time. The TUT Proxy Server accepts the
connection and stores the raw TUT datafile in the proper web server directory. The updated TUT data
is now available to be viewed by users on the Open IONet by the methods described previoudy.

91 453-SDS-SWSI

Section 10. Security

10.1 Security Requirements
SWS will adhere to the following security requirements:

NASA Procedures and Guiddines (NPG) 2810.1, Security of Information Technology -
Misson (MSN) category of NASA information, August 1999

Security Plan for the Network Control Center, NCC 98, 451- SP-NCC/1998
IP Operational Network (10net) Security Plan, 290-003, September 1999

Idedly, NASA should be the digital Certificate Authority (CA). Until NASA/GSFC becomes a
certificate authority, the SWS project may have to generate its own certificates. There is apossbility
that multiple certificate authorities may need to be supported.

10.2 Security Model
The SWS Security Modd will use a COTS toolkit for the following:

Protocol:
Secure Socket Layer (SSL) version 3 protocol is used to provide strong security between
the Client and Application Server
SSL isawell established, highly tested, and widely used protocol

Authentication:
Strong Client authentication using sgned digital certificates from a certificate authority (CA)
Strong Application Server authentication using Sgned digitd certificates from a CA

Leve of Security:
Secure strong encrypted session key exchange
Ability to change sesson keys during asession
Resigs“Clear Text Attacks’ by using large session cipher keys (where alowed by law)
Defeats “Replay Attacks’ by using one-time unique numbers, as part of each message,
associated with each connection id.
Defeats “Man In The Middle Attacks’ by the use of CA dgned Application Server
certificates

F|e<|b|I|ty
Security is implemented a the application leve, dlowing complete customization of the
security model by the applications devel oper
Numerous cryptographic agorithms may be used by SSL, with minimum maintenance costs
Complete source code is available for the toolkit and the cryptographic agorithms

101 453-SDS-SWSI

Portability:

- SSL toolkit is written in Java, and is portable to any platform supporting Java 1.0.2, Java
1.1, and Java 2
The Client and Application Server components may reside on different hardware platforms,
running different operating sysems

Implementation:

- All Clients will be required to present a verifiable certificate from atrusted CA (TBD) to the
SWSI Application Server
The SWSl Application Server will present a verifiable certificate from atrusted CA (TBD)
to each Client
The SWS Client gpplications and SWS Application Server will verify each other’s
certificates, and upon successful verification, will establish a secure SSL. connection

10.3 Security Features

Security features coded into SWS include the following (see the Security Plan for Space Network
Web Services Interface, 452-SP-SWSI, May 10, 2000 for additiona information):

1. Enforce Client password length/congiraints/change frequency.
Minimum length 8 characters (configurable) — I solator enforced

(configurable) of the following 4 criteriamust exist (Isolator enforced):
One capitd letter
One lower case letter
One numerica character
One non-aphanumeric character

Changed every 90 days (configurable) — I solator enforced
Protocol:

When a user attempts login, the Isolator will check the password file and determine if anew
password is required. The Isolator will send the Client a request for a new password, if a
new password is required. The user must be able to provide his old password, and
generate a new password using the criteria supplied by the Isolator, and satisfying the full
criteria listed above. The Isolator will vaidate the user’s supplied old password based on
the password file. The Isolator will dso quaity check the new password to insure that it
uses the above criteria. Either an error will be sent to the Client or the password will be
accepted and stored in the password file. The password file will be updated to reflect
when a new password will be required. A deectivated account will not be prompted for a
new password. A new or re-activated account will aways prompt for a new password.
The user should have the ability on the Client Sde to initiate a password change. Such a
request will be handled at login time, and follow the above protocol.

2. Redtrict number of faled login attempts.

10-2 453-SDS-SWSI

The Isolator should only dlow a maximum of 3 (configurable) failed login attempts, after which a
user’s account will be deactivated by putting a flag in the password file. An error is sent to the
Client.

The system adminidtrator can re-activate a user account, with a new password, using the
password management utility (needs to be written). The user will need to change his password
immediatdy uponfirg login.

3. Utility to manage password file.
The password “file” may actudly be atable in the database.
Develop a GUI based utility for password management.
The utility should alow usersto be listed, added, deleted, deactivated, re-activated.

The file will maintain a userid, encrypted password, name, phone number, activation status flag,
password change date, passphrase change date, and possibly other fields.

The utility will quality check the password for new users, as detailed in item #1.

A re-activated user will prompt for a new password from the sysem admin, which will qudity
check the password, as detailed in item #1.

The password change date will be changed to the current date for new and re-activated users,
forcing usersto enter new passwords upon firg login.

4. Audit files.

All logins (successful or failed) shdl belogged.

A separate file must be maintained for the unsuccessful login attempts.

Client and Application Server activities will be logged for auditing purposes

The Application Server will have some control over the granularity of logging other data.
5. lsolator

The SWS Isolator will vaidate dl requests from each SWS Client gpplication for adequate
authority

103 453-SDS-SWSI

Appendix A — Common Classes

Data will be passed between the SWS Client, Application Server, and Isolator subsystems using
seridizable, common objects. This data will be passed over sockets usng Object Streams. Classes
used for common objects will provide a pair of get and set methods for each dataitem inthe class. This
will alow access to these data items. A class diagram for most classes is given. These objects may
include instances of other objects, as shown in the class diagrams. Table A-1 presentsthe list of classes
used to transfer data

Class Build | originator | notes

LoginObject 1 Client SeeFigure A-1

SetupObyject 1 | solator See Figure A-4

L ogoffObject 1 Client See Figure A-1

LoginFaled 1 Isolator See Figure A-3

ChangePasswordRequest 1 | solator See Figure A-3

ChangePassPhraseRequest 1 Isolator See Figure A-3

PasswordChanged 1 Client See Figure A-3

PassPhraseChanged 1 Client See Figure A-3

ChangeResponse 1 I solator See Figure A-3

| soConnectionStatusChanged 1 Server See Figure A-3

BackendConnectionStatusChanged 1 I solator See Figure A-3

MnemonicActivation 1 Client Informs Application Server of
requested data

MnemonicDeactivation 1 Client Informs Application Server to stop
requested data (applies only to UPD
data)

MnemonicRequest 1 Client Provides the Isolator with the
information needed to fill the
request. See Figure A-11.

Vector of data object(s) 1 | solator Objects used to transfer data

USM_Ligt 1 Isolator SeeFigure A-5

USM SSC Ligt 1 | solator See Figure A-5

Schedule Request List 1 I solator See Figure A-5

SAR 1 Client See Figure A-6

SDR 1 Client See Figure A-7

Alert 1 Isolator SeeFigure A-2

B-1 453-SDS-SWSI

Table A-1. List of Common Classes

B-2 453-SDS-SWSI

Class Build | originator | notes

GCParms 2 | solator See Figure A-5

TSW 2 Client See Figure A-1

SV 2 Client SeeFigure A-1

RAR, RADR, RAMR, PBKR, PBKDR, | 2 Client DAS Resource and Playback

PBKMR Requests. See Figure A-12

RAV, PBKS 2,3 | solator DAS Resource and Playback
Avallabilities. See Figure A-13

ModifySSC, UnlockSSC 2 Client SSC Reguests. See Figure A-14

ViewSSC 2 | solator SSC Values. See Figure A-14

SgRR, URRM 2 Client DAS GCMRs. See Figure A-15

Service Reconfiguration Request 2 Client See Figure A-2

User Reacquisition Request 2 Client See Figure A-2

Forward Link Sweep Request 2 Client See Figure A-2

Forward Link EIRP Reconfiguration 2 Client See Figure A-2

Doppler_Compensation_Inhibit_ 2 Client SeeFigure A-2

Request

Expanded User Frequency 2 Client See Figure A-2

Uncertainty Request

UPD 2 | solator See Figure A-2

ASAR 2 Client See Figure A-8

RR 2 Client See Figure A-9

WLR 2 Client See Figure A-10

TT™ 2 I solator SeeFigure A-2

RCTD 2 | solator See Figure A-2

Table A-1. List of Common
Except for an initia setup object and occasond password

Classes (cont.)
changing support, al data sent to the Client

goplication from the Isolator will be requested by the Client using a sandard naming convention. The

proposed naming convention is given in the table below.
standard database.

‘EIF indicates the test database, ‘norm’ the

Name

Description

USM_List_(EIF or norm)_(User ID)

The active schedule list for a particul ar user

USM_SSC List (EIF or norm)_(Event ID)

The servicelist for aparticular event

Schedule Request List (EIF or norm) (User ID)

The schedule request list for a particular user

RAV (User ID) ###

The DAS Resource Availabilities

PBKS (User ID) #####

The DAS Playback Availabilities

SSC (User ID) #t

Valuesfor aparticular SSC set

B-3

453-SDS-SWSI

GCParms_(EIF or norm) (TDRSID)_(supiden) The current ground control service parameter values
(Service Type)_(link) for an event and service defined by the TDRSID,
supiden, servicetype, and link number.

UPD_(EIF or norm)_(SIC) The current UPDsfor that SIC
Alert (EIF or norm)_(SIC) Alertsfor aparticular SIC
RCTD_(EIF or norm) (SIC) The RCTDsfor that SIC
TTM_(EIF or norm) (SIC) The TTMsfor that SIC

Table A-2. Standard Naming Convention

All the common objects used to send data to the Client will implement the DataEncapsulation interface.
This provides methods to set and get the name of the data. The common objects will provide
enumeration congtants where gpplicable.

All common objects used to send data to the Isolator, such asthe SAR, GCMRs, SVs, and TSWs will
implement the UserDirective interface. This provides methods to set and get the userID (the ID of the
user sending the data). This ID will be set by the Application Server before forwarding the data on to
the Isolator.

The contents of most of the above types of common objects are presented in Figures A-1 through A-
10.

B-4 453-SDS-SWSI

=« gefializable ==

LoginObject

- userld : String
- password © String

- passwordChangeRequested : Boolean

- passphraseChangeRequested : Boolean

- inEIFMode : Boolean

=< gerializable ==

LogoffObject

- userld : String

=« setializable ==

Update_USM_List

- userld : String
- inEIFMode : Boolean

=< senalizable ==

<< getializable ==

T3W

- sic : String
- contents © String
- inEIFode : Boolean

=< gerializable ==

sV

- sic : String
- contents @ Byte[18412]
- inEIFMode : Boolean

Update_Schedule_Request_List

- userlD : String
- inEIFMode : Boolean

Figure A-1 Common Class Diagram 1

B-5

453-SDS-SWSI

=« getializable ==

== serializable == << serializable =
TT™ RCTD UPD
; _ : - supiden : String
- contents : Byte[3093] contents : Byte[3066] e e
- tdrsld : String

<< gerializable ==

User_Reacquisition_Request

- supiden : String

- userld : String

- tdrsld @ String

- link : String

- genicesupportType @ String
- inEIFtode : Boolean

=< serializable ==

Forward_Link_Sweep_Request

- supiden : String

- userld : String

- tdrsld © String

- link @ String

- inEIFtdode : Boolean

<« getializable ==

- timeTag : String
- antennaLlinkMumber : String
- keywords : Properties

<< gerializable ==

Doppler_Compensation_lnhibit_Request

- supiden : String

- userld : String

- tdrsld : String

- link : String

- compensationinhibitCode : String
- inEIFtode : Boolean

<< gerializable ==

Forward_Link_EIRP_Reconfiguration

- supiden : String

- userld : String

- tdrsld : String

- link : String

- powerbdode © String

Service_Reconfiguration_Request

- inEIFMode : Boolean

- supiden : String

- userld : String

- tdrsld : String

- link : String

- senvice . String

- keywaords : Properties
- inEIFktode : Boolean

== gerializable ==

=< getializable ==

Alert

Expanded_User_Frequency_Uncertainty_Request -time : Date

- supiden : String

- userld : String

- tdrsld : String

- link : String

- inEIFMode : Boolean

- severity © String
- message © String
- sic : String

- source © String

Figure A-2 Common Class Diagram 2

B-6 453-SDS-SWSI

<« setializable =

LoginFailed

- userD : String

<< saerializable ==

ChangePasswordRequest

- userlD : String

<< setializable ==

ChangePassPhraseRequest

- userdD : String
minLength : String

=« setializable ==

PasswordChanged

- userlD : String

- oldPassword : String
- newPassword : String
- canceled @ String

=< gerializable =>

IsoConnectionStatusChanged

- isoStatus Boolean

=« getializable ==

BackendConnectionStatusChanged

- hackend=tatus : Boolean

<« getializable ==

PassPhraseChanged

- userD : String
- passPhrase : String

<« getializable ==

ChangeResponse

- success [3tring
- message : String
- userdD : String

Figure A-3 Common Class Diagram 3

B-7

453-SDS-SWSI

<< zerializable ==

SetupObject

- timeDfLastlogin : String

- numberFailedAttermnpts © int

- backendStatus : Boolean

- tdrsList : Wector of TDRS_Elm

- prototypeBEventlist : “ector of PrototypeBEvents
- ssclist : Wector of 35C_List

supidenList : Yector of String

serviceDesclist : “ector of ServiceDescriptions
updDesclist : “Vector of UPDDescriptions
userld : String

sicList : “ector of sicElm

MissionMgr : Boolean

-isCombo : Boolean
1..7| - isDAS : Boolean

== serializable == 1

sicElm

- isDAS : Boolean
- isMCC : Boolean

<< setializable ==

TDRS_EIm

- tdrsld @ String

- isMCC o Boolean

=< serializable ==

PrototypeEvent

| - eventld : String

- event3IC : String

<= serializable ==

SSC_List

- sscld : String
- 5scSIC String
- serviceType @ String

- sic : String
<< zetializable ==
<< serializable >» 0. ServiceDescription
HEBDeseAption L - =erviceMame : String
s 0..%| - serviceParms : “Wector of ServiceParms
- updMarme : String : :
- updParms : Vector of UPDParms - linkMumbers : “ector of String
- updlabels : Wector of UPDLabels - gemrallowed : Boolean
- serviceName : String - respecifiable : Boolean
1 << zetializable ==)
Q.r UPDParms << gerializable ==
- parmMame : String ServiceParms
- subwindowMumber : String -
-type : String - name : String
- Uhits : String - displayCrder :int
- rowlocation © String - t}-’pe_ : String
- calumnbLaocation : String - required : Boolean
- parmEnum*alues : Properies - fixed : Boolean
- parmEnumSeverities : Properties - reconfigurable : Boaolean
- defaultvalue : String
SR BTN - units : String
SRR - minvalue : Vector of String
UPDLabels - maxvalue - Wactor of String
32 - displavds . String
- text © String - respecifiable : boolean
- rowLocation : String - displayLabel : String
- columnlocation :© String - displayLength : short
- parmEnumyalues : Properies

Figure A-4 Common Class Diagram 4

B-8 453-SDS-SWSI

=z« setializable ==

USM_List

<< serializable ==

UsM

- reportTime © Date 1
- USMs Vector of LUSMs

=< gerializable ==

USM_SSC_List i

- reportTime : Date
- 55Cs Wector of ServiceRequests
- tdrsHandovers : Vector of TDRS Handower

=< gerializable ==

TDRS_Handover

- gtart : Date
- stop : Date

- eventlD : String

- msyClass : String

- eventStartTime - Date

- supiden : String

- tdrsld : String

- humberOfSerdces @ String
- protatypeld : String

- status : String

- active : String (Boolean)
- kBandPMCode : String
- sBandPMCode : String
- eventStopTime : Date

<< gerializable ==

- tdrs ; String

=« setializable ==

Schedule_Request_List

.18

ServiceRequest

=< gerializable ==

ScheduleRequest

- repartTime : Date
- ScheduleRequests © Wector of ScheduleReguests

GCParms

- gsclD : String

- supiden : String

- tdrsld : String

- startTime : Date

- stopTime : Date

- parms : Froperties

Figure A-5 Common Class Diagram 5

B-9

453-SDS-SWSI

ScheduleRequest

- startTime : Date

- supiden : String

- tdrsld : String

- msgClass : shont

- requestld : int

- status @ int

- refRequestld : int

- creationTime : Date
- explanation : String
- inEIFMode : Boaolean
- zarDbject : SAR

- rtObject : RR

- azarObject : ASAR

- gdrObject : SDR

- wlrObject : WLH

- rarOhject : RAR

- radrObject : RADR

- ramrObject © HAMR
- pbkrObject : PBKR
- pbkmrObject : PEKMR
- pbkdrObject : PEKDR
- stopTime : Date

SAR

- priority : short

- useTSWYs : Boolean

- waitList : Boolean

- nominalEventStart © Date

- eventPlusTalerance :© String

- eventhinusTolerance : String

- freezelnterval @ String

- prototypeBEvent : PrototypeBEvent

- servicelist ¢ Vector of SericeRequest

0.6

ServiceRequest

- sscld : String

- nominalServiceStart | String

- homminalServiceDuration @ String
- keywords : Properties

- sewviceType [String

- sericeMNumber © short

- linkld : String

- uzeAllDefaults : Boolean

B-10

453-SDS-SWSI

Figure A-6 SAR Common Class Diagram

ScheduleRequest

- startTime : Date

- supiden : String

- tdrsld : String

- msgClass © short

- requestld : int

- status : String

- refHequestld : int

- creationTime © Date
- explanation : String
- inElIFMode : Boaglean
- sarDbject : SAR

- rr0bject : RHR

- asarObject : ASAR
- sdrObject : SDR
-wirObject WLR

SDR

Figure A-7 SDR Common Class Diagram

B-11

453-SDS-SWSI

ScheduleRequest

- stanTime : Date

- supiden : String

- tdrsld : String

- msgClass : short
requestld : int
status : int

- refRequestld : int
creationTime : Date
explanation : String
inEIFMode : Boolean
sarDhbject : SAR

- rt0bject : FR
asarCbject | ASAR
- 5drObject : SDR
wlrObject : YWLR
rarQbject . RAR
radrObject . RADR
ramrObject © RAMR
- pbkrDbject : PBKR
- pbkmrObject | PEKMR
- pbkdrObject : PEKDR
- stopTime : Date

0.1
ASAR

- useT3vs : Boolean

- nominalEventStart © Date

- eventPlusTolerance : String

- eventhdinusTolerance : String

- freezelnterval © String

- prototypeBEvent : PrototypeEvent

- senvicelist © “ector of SeniceRequest

0..16

ServiceRequest

sscld © String
nominalServiceStart © String
naminalServiceDuration : String
keywords : Properies

- sewviceType @ String
serviceMumber : short

linkld : String

useAllDefaults : Boolean

Figure A-8 ASAR Common Class Diagram

B-12 453-SDS-SWSI

ScheduleRequest

- statTime : Date

- supiden : String

- tdrsld : String

- msgClass : shart

- reguestld : int

- status @ int

- refRequestld : int

- creationTime : Date
- explanation : String
- inEIFMade : Boolean
- satObject : SAR

- r0bject : RR

- agarDbject : ASAR

- sdrObject : SOR

- wirObject © WLR

- rarDhject : RAR

- radrObject : RADR

- ramrObject © RAMR
- pbkrObject : PBKR
- pbkmrObject : PEKMR
- pbkdrObject : PEKDR
- stopTime : Date

RR

- uzeTSWWs : Boolean

- nominalEventStart © Date

- eventPlusTolerance : String

- eventMinusTolerance : String

- freezelnterval String

- prototypeEvent : PrototypeBEvent

- semvicelist © Vector of ServiceRequest

1
0..16

ServiceRegquest

- sscld : String

- nominalServiceStart © String

- nominalSerdceluration : String
- keywords : Properties

- seniceType © String

- serviceMumber : short

- linkld : String

- ugeAllDefaults : Boolean

Figure A-9 RR Common Class Diagram

B-13 453-SDS-SWSI

ScheduleRequest

- startTime : Date

- supiden ; String

- tdrzld : String

- mggClags : short

- requestid : int

- status : String

- refRequestld | int

- creationTime : Date
- explanation ; String
- inElFode : Boolean
- sarObject - SAR

- nOhbject : RR

- asarDbect = ASAR
- gdrObject © SOR

- wirObject : WLR

A
WLR

- expirationTime : Date

Figure A-10 WLR Common Class Diagram

B-14 453-SDS-SWSI

<< interface =»

UserDirective

+ getlUserdD [) : String

+ setllserdD { String 1 : void

+ getEIFMode [) Boolean

+ setEIFMode { Boolean) : vaid

<« setializable ==

MnemonicRequest

<< Notation =» - gifFlag : Boalean .

- userlD : String sE iSO AR
eventlD can —4 - eventlD : String
be used to - supiden : String supiden can be
pass a reference - semiceType © String used to pass 3IC
regquestlD Clink int

- start : Date

- stop : Date

=4 Motation ==

- minDur : String
- maxMumberLines : int

<= Notation »> - tdrslds : Vector of String maxMumberLines: zero {0)
. - mnemMame : String implies no limit
requestlD is set — o - requestlD : String
Y Ay Isnlatnr. - lock3EC : Boolean
before forwarding
to the SOIF | =< Notation ==

If the request is for SSC values,
lockS5C indicates whether the S5C
should be locked for editing

Figure A-11 MnemonicRequest Common Class Diagram

B-15 453-SDS-SWSI

<< Notation ==

In the case of DAS reguests, supiden will be
used where sic is desired. The backend will
need to be aware that the supiden field
containg the sic value.

ScheduleRequest

<< Motation ==

- startTime : Date

- supiden : String

- tdrsld : String

- msgClass : short

- requestld :int

- status int

- refRequestld : int

- creationTime : Date
- explanation : String
- inEIFtdode : Boalean
- sarDhbject : SAR

- rr0bject : RR

- asarUbject : ASAR

- sdrObject : SDR

- wirOhbject : WLR

- rarObject : RAR

- radrObject : RADR

- ramrObject - RAMR
- pbkrObject : PEKR
- pbkmrObject : PEKMR
- pbkdrObject : PEKDR
- stopTime : Date

For DAS requests, msgClass
will contain the message type
desired.

S—

<< Motation ==

creationTime will be used
for the time tag member
in DAS reguests.

—

<< Motation ==

stopTime has geen added
in support of DAS requests.

RAR

0.1

PBKR

- serviceObject : SenviceRequest

1 0.1

- retrievalData : Wectar
- ipAddress © String
- portMumber : shont

RAMR

- serviceOhbject : ServiceRequest

1 1

ServiceRequest

- sscld © String

- nominalServiceStart String

- hominalServiceDuration : String
- keywards : Properties

- serviceType @ String

- gerviceMumber : short

- linkld : String

- useAllDefaults : Boolean

=< Notahion ==

retrievalData consists of an
egual number of start times
and request 1Ds

B
PEKMR

PBKDR

RADR

Figure A-12 DAS Requests Common Class Diagram

B-16

453-SDS-SWSI

<< gerializable ==

=< interface »>

DataEncapsulation
flrmported?

+ getMame [] : String
+ setMame [String J : woid

<« getializable ==

RAV

frmported}

PBKS

[lmported?

- name : String

- availableTimes “ector of AvailResourceTimes
- reportTime @ Date

- name : String
- availTimes : Vector of AvailPBTimes

- reportTime : Date

=< gerializable ==

AvailResourceTimes

{riported}
- impact : String
- start : Date
- stop : Date

- tdrs : String

- duration : String

=< geralizable ==

AvailPBTimes

Tmported}

- start : Date
- stop : Date
- eventlD : String

Figure A-13 DAS Availability Common Class Diagrams

B-17

453-SDS-SWSI

< interface »>

DataEncapsulation
Trported?

+getMame { J: String
+ setMame [String J : void

== geralizable ==

View3SSC
- name : String
- ssclD @ String
- sic : String

- serviceType : String
- parmsToYalues : Properties
- lockSSC : Boolean

== Notation ==

lockSSC indicates
whether the 55C
was locked for editing

=« jnterface ==

UserDirective

+ getllserdD [1 String

+ setUserlD [String) : void

+ getEIFMode () Boolean

+ setEIFMode (Boolean) © void

A
<« setializable ==

ModifySSC

- eifflag : Boolean
- userlD : String

- ssclD © String

- sic @ String

- parmsTotalues : Properties

== MNotation ==

an ModifyS5C object
automatically
unlocks the S5C

<+ setializable ==

UnlockSSC

- eifFlag : Boolean
- userlD : String

- s5clD : String

- sic : String

Figure A-14 SSC Support Common Class Diagrams

B-18

453-SDS-SWSI

=< gerializable ==

<< interface ==

UserDirective

+ getlUserdD [) String

+ setllserdD { String 1 : void

+ getEIFMode [) Boolean

+ setEIFMode { Boolean) : vaid

]

SigRR

- userlD : String

- inEIFtode : Boolean
- sic : String

- requestlD : String

- eventlD : String

Figure A-15 DAS GCMR Support Common Class Diagrams

<« gsetializable ==

URRM

- userdD : String

- inEIFtode : Boolean
- sic © String

- eventlD : String

- requestlD : String

- keywaords : Properties

B-19

453-SDS-SWSI

Appendix B - Traceability

B-1 453-SDS-SWSI

Appendix C - Isolator-SNIF Interface

This gppendix defines data exchange formats between the I solator and the SNIF.

The communication protocol between the Isolator and the SNIF is UDP, the format of the data
exchanged between the two dements is chosen to minimize software changes in the future in case we
decide to change the protocol to TCP/IP.

In generd, the formet will congst of 2-bytes Synchronization pattern, followed by 4 bytes of support
identification code, followed by 1-byte of NCC mode, followed by 1-byte of datatype, followed by 2-
bytes of data length and findly followed by variable length of the actud data information.

dScC ni{t| d Data Information

SY — 2-bytesfixed synchronization pattern. We sdlect 2 ASCII characters*SY’ for sync.

sic — 4-bytes (4 Alpha-Numerica Characters) representing the Support Identification Code (SIC)
spexific to the misson. When the message is not mission specific (i.e. generd dert for dl), the SIC
will be set to 0000.

n — 1 byte representing the addressed NCC that the Data Information pertain to.

‘N’ for normal NCC
‘E’ for engineering interface (EIF) or ANCC

t — 1 byte representing the Type of the Information and described as follow:
‘K’ for Key Information of the messages stored in the data base
‘F for File Information of the messages stored in the locd disk area
‘A’ for Alerts messages stored in the data base
‘M’ for actual NCC Messages such as. MGCMRs

dl — 2-bytes representing the length (in bytes) of the Data Information. The two bytes represent a
binary unsgned short (16 bits) Integer vaue.

E1l 453-SDS-SWSI

Data I nformation — variable number of bytes corresponding to the actud data exchanged between the
Isolator and the SNIF. This Data Information is further defined according to
its specific type as follow:

E-2 453-SDS-SWSI

Key Information ‘K’ Type:

Data Information (Key info.)

A
~ N

mt | ndex number

mt — 2-bytes (2 ASCII characters) representing the Message Type, defined as follow:

‘SA’ - Schedule Add Request (SAR) Messages N

‘AS - Alternate SAR (ASAR) Messages Sent by:

‘SD’ - Schedule Delete Request (SDR) Messages > |solator (Snifinterface)
‘RR’ - Replace Request (RR) Messages

‘WL’ - Wait List Request (WLR) Messages

‘UR - User Reconfiguration Request (URRM) Messages _/

Index number — Long integer (4 bytes) representing the primary key number of the message as stored
in the database. The Index number is unique for each message stored in the
database table. The Request ID (7-digits numericd number) will be used as the
unique index number of the message. However, the valid Request ID range has to
be between 1 and 8,999,999. A sequence number generated by the database with
maximum and minimum limitations will be used by the Isolaor, the SNIF and the
SDIF as arequestiD. Because some events can be indefinite (in the case of DAS),
the database will check if a Request 1D is sill occupied by an event and, in that case,
it will skip that ID and tries the next onetill it finds an unused one.

The K type messages are only sent by the Isolator to the SNIF. Even though, SNIF stores messages
data in the data basg, it does not send K type information to the Isolator but instead it sends derts
messages. SNIF will store its own generated aerts messages in the database prior to their transmisson
to the Isolator.

Both the SNIF and the Isolator will poll the database or file directory periodicdly (every 30 - 60
seconds) for messages that have been saved but not transmitted. The messages will be processed and
tranamitted to the expecting end. The messages that have been stored in the data base will be tagged as
done and the messages that have been stored in the local disk space will be deleted after transmission.

E3 453-SDS-SWSI

File Information ‘F’ Type:

Data Information (File info.)
A

mt File Pathname

mt — 2-bytes (2 ASCII characters) representing the Message Type, defined as follow:

‘SV’ - State Vector (SV) Messages } Sent by.

‘TS - TDRS Scheduling Window (TSW) Messages |solator (Snifinterface)
‘RC’ - Return Channd Time Delay Measurement (RCTDM) Messages Sent by:
‘TT - Time Transfer (TTM) Messages SNIF

File Pathname — Variable number of bytes (ASCII characters) representing the path name of thefilein
the loca disk areawhere the message was sored. The name of the file is formatted
such that the SIC, Message type and dateltime of storage are dl included in a 15
characters string (see figure below.)

File Name
e N
~ N
mt e Date/time

Where:
‘mt’ fidd is as defined above.

‘dC’ — 4-bytes representing the Support Identification Code (SIC) specific to the misson. This
field is pulled from the primary header of the message just after the SY fidd (see format
diagram on firg page of this section)

Date'Timeas YYYYDDDHHMMSS (Y ear, day of the year, hour, minute, second)

E4 453-SDS-SWSI

ES

453-SDS-SWSI

Alert Message ‘A’ Type:

Data Information (Alert Message)

/\
— T

S | source date Alert Message

s—1-byte (1 ASCII character) representing the severity of the dert message, defined as follow:
‘G —Green
‘Y’ —Ydlow
‘R —Red

sour ce — 16-byte string (padded with spaces) indicating the source of the alert

date — 9-byte ASCII digits representing date and time when the dert was generated in the following
format: YYYYDDDHHMMSS (Y ear, day of the year, hour, minute, second)

Alert Message — Character string describing the dert message. The Alert Message can be of any
length and can have any number of delimited characters.

‘US - User Schedule (USM) Messages A
0 ‘Ul —Normd-Fixed (US1) Messages

0 ‘U2 —Premium-Fixed (US2) Messages

0 ‘U3 —SmulaionFixed (US3) Messages

0 ‘U4 —Norma-Flexible (US4) Messages Sent by:
0 ‘U5 — SmulaionFlexible (USS) Messages > SNIF
‘GD’ - GCM Digposition (GCMD) Messages

‘GS - GCM Status (GCMS) Messages

‘AF - Acquistion Failure Notification (AFN) Messages

‘SR’ - Schedule Result (SRM) Messages j

Other type of dert messages sent by the Isolator to SNIF or to the Application Server such as:
event message 5 minutes before operation dart time.

E-6 453-SDS-SWSI

NCC Message ‘M’ Type:

Data Information (NCC Message)
A

mt Data of the Message

mt — 2-bytes (2 ASCII characters) representing the Message Type, defined as follow:

Multiple Ground Control Message Request (MGCMR) Messages)
0 ‘AC’ - User Reacquisition Request (URR) Messages
0 ‘LS - Forward Link Sweep Request (FLSR) Messages

0 ‘LE - Forward Link EIRP Reconfiguration (FLER) Messages > IS:;[atb;/r-
0 ‘UF - Expanded User Frequency Uncertainty Request (EUFUR)
0 ‘DC - Doppler Compensation Inhibit Request (DCIR) Messages)

‘PD’ - User Performance Data (UPD) Messages T+ svIF

Data of the message — Variable length buffer containing the actua Message data. The data will be
composed of series of dl ASCII name-vaue pairs ddimited by asemicolon *;
character. The name and the vaue can be of any meaningful ASCII string
separated by the'=" sign. i.e.

MESSAGE_TYPE=91,;MESSAGE_CLASS=01;MESSAGE_ID=ABCDEFG,;

E7 453-SDS-SWSI

Appendix D — Isolator-SDIF Interface

TBS

E1l 453-SDS-SWSI

Appendix E — Isolator Object Types Description

Data flow between the Application Server, | solator and SNIF

M essage Name Object Name Application Server | solator SNIF
Receive Store, Send and
Alert Messages Alert Port 3 Forward Store & Send
Schedule Add ScheduleRequest of Send Store datain DB Receive Kev 1o
Request SAR Port 1 Send Key Info %Y
Schedule Delete | ScheduleRequest of Send Store datain DB Recive Kev Info
Request SDR Port 1 Send Key Info %Y
ScheduleRequest of Send Storedatain DB .
Alternate SAR ASAR Port 1 Send Key Irfo Receive Key Info
ScheduleRequest of Send Storedatain DB .
Replace Request RR Port 1 Send Key Info Receve Key Info
oy ScheduleRequest of Send Store datain DB .
Wait List Request WLR Port 1 Send Key Info Recelve Key Info
Send Storedatain File .
State Vector SV Port 1 Send File Irfo Receive File Info
TDRS Scheduling Send Store dataiin File .
Window =W Port 1 SadFilelnfo | RedveRilelnfo
Service Service Reconfigur Send Store data and Receive Kev 1o
Reconfiguration ation Request Port 1 Send Key Info %Y
GCMR- User User Reacquisition Send .
Reaction Request _Request Port 1 Forward Recaive Key Info
GCMR- Forward | Forward Link_Req Send .
Link Sweep et Port 1 Forward Receve Key Info
GCMR-Forward | Forward Link EIR
Link EIRP P_Reconfiguration Send .
Reconfiguration (Normd power Port 1 Forward Receive Key Info
Norma Request mode s=t)
GCMR-Forward | Forward_Link_EIR
Link EIRP P_Reconfiguration Send .
Reconfiguration (High power mode Port 1 Forward Recaive Key Info
High Power Set)
E1l 453-SDS-SWS|

M essage Name Object Name Application Server I solator SNIF
GCMR- Expanded | Expanded User Fr Send
User Fregquency equency_Uncertaint Port 1 Forward Receive Key Info
Uncertainty y Request
GCMR-Doppler
Compensation Store data and Send .
Inhibit Request Send Key Info Port 1 Forward Recaive Key Info
none SSA shuttle
R?:Jr:;%@d MnemonicRequest Recaive Eoﬁe\'/\;?t If:iillg(ljr:tz Storedatain File
Message RCTDM Port 2 Send Object Send File Info
Time Trandfer MnemonicRequest Recave Recave Hle Info Store datain Fle
Message ™ Port 2 Convettfiledda | o Fieinfo
Send Object
. . Receive data
User Pgr;?;mmce M nemanIlDEDataof RF:E \;e Convert to Object Send data
Send Object
Schedule Result Receive Alet Update Datebase,
SRM Forward Alert Store & send an
Message Port 3
Alert
User Schedule Receive Alert Update Database,
USM Forward Alert Store & send an
Message Port 3
Alert
Acquistion Failure Receive Alert Store & send an
Notification AFN Port 3 Forward Alert Alert
E2 453-SDS-SWS|

Data flow between the Application Server and | solator

M essage Object Name Application I solator SDIF
Name Server
Schedule :
Request (gﬂ;njg CRR eqllj:t: Send Receive and]
Summary — SquEsL Port 1 process Request
Lis)
Request
icgqeg;e MnemonicData of Receive
Summary Schedulei_sFt{equeﬁ_L Port 2 Send Object -
Response
ACt'S\‘/J?nSChedm ®l ™ nemonicRequest Send Receive and]
Requ est) (USM_List) Port 1 process Request
Active Schedule| MnemonicData of Receive Merge Data from
SuUmmary USM_Ligt Port 2 DASIif DAS User -
Response Send Object
Serv:E(:\t/a elr_g for M nemonicRequest Send Receive and]
Request (USM_SSC Lis) Port 1 process Request
SarviceLig of . .
MnemonicData of Recelve .
Events USM_SSC List Port 2 Send Object]
Response
User Log-in N Send Receive and
Request LoginObject Port 1 process Request)
E3 453-SDS-SWS|

User Log-out
Request

L ogoffObject

Port 1

Receive and
process Request

E-4

453-SDS-SWSI

M essage Object Name Application | solator SDIF
Name Server
Fall Log-in N Recelve .
Response LoginFaled Port 2 Send Object -
Good Log-in : Receve .
Response SetupObject Port 2 Send Object -
SSC Service M nemonicRequest Send Receive and
Parameters (SSC) Port 1 rocess Request)
Request P ™
SSC Service MnemonicData of Receve .
Parameters . Send Object -
ViewSSC Port 2
Reply
Modify SSC
Service , Send Receive and
Parameters ModifySSC Port 1 process Request)
Request
Unlock the Send Receive and
SSC code UnlockSSC Port 1 process Request]
I\C; roundeCF?:rt;?I] MnemonicRequest Send Receive and]
Rqu et (GCParms) Port 1 process Request
Ground Control . :
MnemonicData of Recelve .
Message Param GCPams Port 2 Send Object -
Response
E5 453-SDS-SWS|

Data flow between the Application Server, | solator and SDIF

M essage Name Object Name Application | solator SDIF
Server
Receve Store, Send and
Alert Messages Alert Port 3 Forward Store & Send
Resource M nemonicRequest Send Forward Recsive
Availability Request (RAV) Port 1
Resource : :
- MnemonicData Recave
Avalladility of RAV Port 2 Forward Send
Response
Active Schedule | MnemonicRequest Send Receive, send Rege ve& Send
summay Request (USM_Lis) Port 1 Request and | Active Schedule
- process Request Lig
: MnemonicData of .
Active Schedule . Receve .
Summery Resporse USM Lig Port 2 Send Object -
Service Lig for M nemonicRequest Send Forward)
Events Request | (USM_SSC List) Port 1
SarviceLig of MnemonicData of Recalve .
EventsResponse | USM_SSC List Port 2 Send Object]
Resource ScheduleRequest of Send StoreDdét ain Receive Key
Allocation Request RAR Port 1 Send Key Info Info
Resource . Update DB,
Allocation RARRes Recaive Alert Forward Alert | Store & Send
Port 3
Response an Alert
Rgeourw . ScheduleRequest of Send Store aatain Receive Key
Allocation Deletion RADR Port 1 DB Ifo
Request Send Key Info
Resource : Update DB,
Allocation Deletion RADRes Recalve Alert Forward Alert | Store & Send
Port 3
Response an Alert
Resource .
Allocation | ScheduleRequestof | Send StoreDd;‘a'” Receive Key
Modification RAMR Port 1 Send Kev Irfo Info
Request %
E6 453-SDS-SWS|

M essage Name Object Name Application | solator SDIF
Server
Resource
: . Update DB,
Allggathn RAMRes Recaive Alert Forward Alert | Store & Send
Modification Port 3
an Alert
Response
Ser_wce . Sarvice Reconfigur Send .
Reconfiguration ation Request Port 1 Forward Receive
Request ahe
Recosr;.;‘riwt::r?ation SerRRes converted | Receive Alert Forward Alert Store & Send
g to Alert Port 3 an Alert
Response
Sgnd Reacquistion| User_Reacquisition Send .
Request _Request Port 1 Forward Recave
Sgnd Reacquistion | SigRRes converted | Recelve Alert Store & Send
Response to Alert Port 3 Forward Alert an Alert
User Performance | MnemonicData of Receve Forward Send
Data Status UPDS Port 2
Payback Search | MnemonicRequest Send .
Request (PBKS) Port 1 Forward Recave
Playback Search | MnemonicData of Receve
Response PBKS Port 2 Forward Send
ScheduleRequest of Send Store datain Receive Key
Playback Reques PBKR Port 1 DB Info
Send Key Info
. Update DB
PBKRes Receive Alert ’
Payback Response converted to Alart Port 3 Forward Alert | Store & Send
an Alert
. Storedatain :
Playback Deletion | ScheduleRequest of Send DB Receive Key
Request PBKDR Port 1 Send Key Info Info
. . Update DB,
&0 an Alert
A ayback ScheduleRequest of Send Store aatain Receive Key
Modfication PBKMR Port 1 DB Info
Request Send Key Info
E7 453-SDS-SWS|

Playback PBKMRes | Receive Alert Update DB,
Modification Forward Alert Store & Send
converted to Alert Port 3
Response an Alert
State Vector Send :
Update sV Port 1 Forward Recave
State Vector Recave Alert Store & Send
Update Response SVRes Port 3 Forward Alert an Alert

E8

453-SDS-SWSI

Appendix F — SWSI Database Tables

Table Name Type of Description
Table

ACTIVE _SCHEDULE Dynamic Storesinformation from NCCDS USMs

ACTIVE_SCH_PARAM Dynamic Storesinformation from NCCDS USMs

ACTIVE SCH SERVICE Dynamic Stores information from NCCDS USMs

ACTIVITY_LOG Dynamic Stores User log in activities

ALERT_MESSAGE Dynamic Stores all the Alerts received from DAS and generated by
SWS

DEF DIRECTORIE Static

GCMR_PARAM Dynamic Stores information about NCCDS User GCMR

GCMR_REJECT_CODE Stetic

PLAYBACK Dynamic Stores DA S Playback Reguests

PROTOTYPE EVENT_CODE Static Stores NCCDS Prototype Codes

REALTIME_CONNECTION Static Storesinformation about making connectionswith NCCDS
real-time system

REQUEST Dynamic Stores all the NCCDS and DA'S Scheduling Requests made by
SWSI user

REQUEST STATUS Static Contains description of all the valid status codes

REQUEST TYPE Static

SAR Dynamic Storesinformation for NCCDS and DAS Scheduling Requests

SCHEDULE_CONNECTION Static Contains information about making connections with NCCDS
scheduling system

SERVICE LINK Static

SERVICE_PARAM Static Containsinformation for performing parameter validation,
building dynamic display panels, and processing NCCDS
GCMR/USM messages

SERVICE TYPE Static Contains al the Service Types supported by SWSI and other
information used for processing NCCDS GCMR/USM
messages

SIC Static Contains all the SICs supported by SWSI

SP_ENUM_VALIDATION Static Contains information for validating parameters that of type
Enumerated

SP_NUMERIC_VALIDATION Static Containsinformation about validating parameters that have
valid range

SRM_RESULT CODE Static Contains Text description of each SRM Result Code

SR _PARAM Dynamic Stores all parametersused in a SAR/RAR

SR SERVICE Dynamic Stores service information for each event scheduled

SSC Semi-Static Contains SSC codes used to schedule SAR/RAR

SSC_PARAM Semi-Static Contains default values for each parameter assigned to an

SSC code

G2

453-SDS-SWSI

SUPIDEN Static Contains valid SUPIDEN supported by SWSI

SWSI USER Sami-Static Contains SWSI user information

SWSI USER SIC Static Intermediate table for SWSI_USER and SIC tables

TDRS GROUP Static Contains TDRS group names

TDRS IN_GROUP Static Intermediate tablefor TDR_ NAME and TDRS GROUP tables

TDRS NAME Static Contains base TDRS names

UPD Static Contains information to build UPD display

UPD_ENUM_VALUE Static

UPD LABEL Static

UPD_PARAM Static Contains information about UPD parameters to process
NCCDS UPD messages and for constructing UPD display

USR GCMR Dynamic Stores information for NCCDS User Reconfiguration Reguests

ACTIVE SCHEDULE V VIEW

ACTIVE SCH SERVICE V VIEW

SCHEDULE REQUEST V VIEW

SR SERVICE V VIEW

G2

453-SDS-SWSI

Abbreviations and Acronyms

AFN
ANCC
API
ASAR
BB

CA
CCS
CM
CVS
DAS
DASCON
DCIR
DDD
EIF
EIRP
EUFUR
FDF
FLER
FLSR
GCC
GCM
GCMR
GCM S&D
GDB
GDPro

Acquistion Failure Notice

Auxiliary Network Control Center
Application Programming Interface
Alternate Schedule Add Request

Bit Block

Certificate Authority

Communications and Control Segment
Configuration Management

Concurrent Versions System

Demand Access System

Demand Access System Controller
Doppler Compensation Inhibit Request
Data Display Debugger

Enginesring Interface

effective isotropic radiated power
Expanded User Frequency Uncertainty Request
Hight Dynamics Fadility

Forward Link EIRP Reconfiguration
Forward Link Sweep Request

GNU C Compiler

Ground Control Message

Ground Control Message Request
Ground Control Message Status & Disposition
GNU Debugger

Graphics Designer Professiond

G2

453-SDS-SWSI

GN
GNU
GSFC
GUI

HA

HP
HTML
ICD
IDE
IRV
|IONET
P
JSWITCH
MM
KSA
KaSA
LDBP
MAF
MAR
MGCMR
MOC
MSOCC
PBKDR
PBKMR
PBKR
NASA
NCC
NCCDS

Ground Network

recurgve acronym for “GNU’s Not Unix”
Goddard Space Hight Center

Graphical User Interface

High Availability

Hewlett-Packard

Hypertext Markup Language

Interface Control Document

Integrated Development Environment
Improved InterRange Vectors

|P Operational Network

Internet Protocol

Java-based Spacecraft Web Interface to Telemetry & Command Handling
Java Virtud Machine

Ku-band single access

K aband single access

Long Duration Baloon Project

Multiple Access Forward

Multiple Access Return

Multiple Ground Control Message Request
Mission Operations Center

Multisatellite Operations Control Center
Playback Deletet Request

Payback Modifucation Request

Playback Request

Nationd Aeronautics and Space Adminigtration
Network Control Center

Network Control Center Data System

G2 453-SDS-SWSI

NCD
NISN
NPG
OOAD
ODM
RADR
RAMR

RCS
RCTD
RCTDM
RFI
RMA

SMAF
SMAR
SN
SNIF

SSL
SPSR

NCCDS Centra Delogger

NASA Integrated Services Network
NCCDS Protocol Gateway
object-oriented andysis & design
Operations Data Message

Resource Allocation Deletion Request
Resouce Allocation Modify Request
Resource Allocation Request
Revison Control System

Return Channd Time Delay

Return Channel Time Delay Message
Radio Frequency Interference
Reigbility/Maintainability/Availability
Replace Request

Single Access

South Atlantic Anomay

Schedule Add Request

Schedule Delete Request

Spacecraft Identification Code
S-band Multiple Access Forward
S-band Multiple Access Return
Space Network

SWSI-NCCDS Interface

Schedule Result Message

Secure Socket Layer

Service Planning Segment Replacement
S-band Single Access

Service Specification Code

G2

453-SDS-SWSI

STGT
SUPIDEN
SV
SWSI
TBD
TBS
TCP
TDRS
TLE
TSW
™
TUT
uUbDP
UML
UPD
UPDR
UPS
URR
URRM
USM
WLR
WSGT

XDR
XML

Second TDRSS Ground Terminal
Support Identifier

State Vector

SN Web Services Interface

to be defined/determined

to be specified/supplied
Transmission Control Protocol
Tracking and Data Relay Satdllite
two-line dement

TDRS Scheduling Window

Time Trandfer Message

TDRS Unscheduled Time

User Datagram Protocol

Unified Modding Language

User Performance Data

User Performance Data Request
User Planning System

User Reacquisition Request

User Reconfiguration Request Message

User Schedule Message

Wait List Request

White Sands Ground Termina
World Wide Web

eXternd Data representation
eXtensble Markup Language

G2

453-SDS-SWSI

